K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

TH1: m=1 thay vào phương trình trên ta có:

\(0x+1=0\) ( vô lí)

Vậy m=1 loại

TH2: m khác 1

 \(\left(m-1\right)x+3m-2=0\Leftrightarrow\left(m-1\right)x=2-3m\Leftrightarrow x=\frac{2-3m}{m-1}\)

\(x\ge1\Leftrightarrow\frac{2-3m}{m-1}\ge1\Leftrightarrow\frac{2-3m}{m-1}-\frac{m-1}{m-1}\ge0\Leftrightarrow\frac{3-4m}{m-1}\ge0\)

\(\Leftrightarrow\frac{3}{4}\le m< 1\)

11 tháng 6 2019

không biết có đúng không nữa :(, kiến thức toán lớp 9 là gì ??

Phương trình đã cho tương đương với 

\(\left(m-1\right)x=2-3m.\)(*) 

Với m=1 thì (*) \(\Leftrightarrow0x=2-3\Leftrightarrow0x=-1\)(vô lí) 

Suy ra với m=1 thì phương trình đã cho vô nghiệm 

Với m khác 1 thì (*) \(\Leftrightarrow x=\frac{2-3m}{m-1}\)suy ra với m khác 1 thì phương trình đã cho luôn có nghiệm duy nhất 

Mà \(x\ge1\)nên \(\frac{2-3m}{m-1}\ge1\Leftrightarrow\frac{2-3m}{m-1}-\frac{m-1}{m-1}\ge0\Leftrightarrow\frac{2-3m-m+1}{m-1}\ge0\)

\(\Leftrightarrow\frac{-4m+3}{m-1}\ge0\)

Xảy ra 2 trường hợp:

TH1\(\hept{\begin{cases}-4m+3\ge0\\m-1>0\end{cases}\Leftrightarrow\hept{\begin{cases}m\le\frac{3}{4}\\m>1\end{cases}\Leftrightarrow}}m\in\varnothing.\)

TH2 \(\hept{\begin{cases}-4m+3\le0\\m-1< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ge\frac{3}{4}\\m< 1\end{cases}\Leftrightarrow\frac{3}{4}\le}m< 1.\)

Vậy với \(\frac{3}{4}\le m< 1\)thì phương trình đã cho có nghiệm duy nhất \(x=\frac{2-3m}{m-1}\)thỏa mãn \(x\ge1\)

NV
16 tháng 12 2020

1.

\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)

Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:

\(t^2-3m.t+m=0\) (1) 

Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:

TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)

\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)

\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)

TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)

\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)

\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)

Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)

2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)

Ko tồn tại m thỏa mãn

Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?

 

16 tháng 12 2020

giải thích cho em bài 1 cái đoạn TH1,TH2 với ạ

NV
10 tháng 1 2021

\(\left(m-1\right)x=2-3m\) (với \(m\ne1\))

\(\Rightarrow x=\dfrac{2-3m}{m-1}\)

\(x\ge1\Rightarrow\dfrac{2-3m}{m-1}\ge1\)

\(\Rightarrow\dfrac{2-3m}{m-1}-1\ge0\Rightarrow\dfrac{3-4m}{m-1}\ge0\)

\(\Rightarrow\dfrac{3}{4}\le m< 1\)

10 tháng 1 2021

\( (m-1)x+3m-2 =0 \\ \Leftrightarrow x= \dfrac{2-3m}{m-1} \\ \Rightarrow \) PT có nghiệm \(\Leftrightarrow m-1 \ne 0 \Leftrightarrow m \ne 1\)

\(x ≥ 1 \Leftrightarrow 2-3m ≥ m-1 \Leftrightarrow m ≤ \dfrac{3}{4}\)

Vậy \(m ≤ \dfrac{3}{4}\).

a)

Ta có: \(\Delta=\left[-2\left(m+2\right)\right]^2-4\cdot1\cdot\left(m-3\right)\)

\(=\left(-2m-4\right)^2-4\left(m-3\right)\)

\(=4m^2+16m+16\ge0\forall x\)

Suy ra: Phương trình \(x^2-2\left(m+2\right)x+m-3=0\) luôn có nghiệm với mọi m

Áp dụng hệ thức Viet, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)=2m+4\\x_1\cdot x_2=m-3\end{matrix}\right.\)

Ta có: \(\left(2x_1+1\right)\left(2x_2+1\right)=8\)

\(\Leftrightarrow4\cdot x_1x_2+2\cdot\left(x_1+x_2\right)+1=8\)

\(\Leftrightarrow4\left(m-3\right)+2\left(2m+4\right)+1=8\)

\(\Leftrightarrow4m-12+4m+8+1=8\)

\(\Leftrightarrow8m=8+12-8-1\)

\(\Leftrightarrow8m=11\)

hay \(m=\dfrac{11}{8}\)

Tiếp tục với bài của bạn Nguyễn Lê Phước Thịnh 

b) 

Ta có: \(x_1^2+x_2^2-3x_1x_2=\left(x_1+x_2\right)^2-5x_1x_2\)

\(\Rightarrow P=4m^2+11m+31=4m^2+2\cdot m\cdot\dfrac{11}{2}+\dfrac{121}{4}+\dfrac{3}{4}\) \(=\left(2m+\dfrac{11}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

  Dấu bằng xảy ra \(\Leftrightarrow2m+\dfrac{11}{2}=0\Leftrightarrow m=-\dfrac{11}{4}\)

  Vậy \(P_{Min}=\dfrac{3}{4}\) khi \(m=-\dfrac{11}{4}\)

 

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1

18 tháng 1 2021

PT có nghiệm duy nhất khi và chỉ khi m - 1 khác 0, tức m khác 1.

Khi đó \(x=\dfrac{2-3m}{m-1}\).

\(x\ge1\Leftrightarrow\dfrac{2-3m}{m-1}\ge1\Leftrightarrow\dfrac{2-3m-m+1}{m-1}\ge0\Leftrightarrow\dfrac{3-4m}{m-1}\ge0\Leftrightarrow\dfrac{4}{3}\ge m>1\).

Vậy ....

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Lời giải:
Từ PT$(1)\Rightarrow x=m+1-my$. Thay vô PT(2):

$m(m+1-my)+y=3m-1$

$\Leftrightarrow y(1-m^2)+m^2+m=3m-1$

$\Leftrightarrow y(1-m^2)=-m^2+2m-1(*)$

Để hpt có nghiệm $(x,y)$ duy nhất thì pt $(*)$ cũng phải có nghiệm $y$ duy nhất 

Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow m\neq \pm 1$
Khi đó: $y=\frac{-m^2+2m-1}{1-m^2}=\frac{-(m-1)^2}{-(m-1)(m+1)}=\frac{m-1}{m+1}$

$x=m+1-my=m+1-\frac{m(m-1)}{m+1}=\frac{3m+1}{m+1}$

Có:

$x+y=\frac{m-1}{m+1}+\frac{3m+1}{m+1}=\frac{4m}{m+1}<0$

$\Leftrightarrow -1< m< 0$

Kết hợp với đk $m\neq \pm 1$ suy ra $-1< m< 0$ thì thỏa đề.

26 tháng 12 2021

\(a,\Leftrightarrow\Delta'\ge0\\ \Leftrightarrow\left(m+2\right)^2-\left(m^2-4\right)\ge0\\ \Leftrightarrow m^2+4m+4-m^2+4\ge0\\ \Leftrightarrow4m+8\ge0\\ \Leftrightarrow m\ge-2\\ b,\Leftrightarrow\Delta'=0\Leftrightarrow m=-2\)