Tìm số tự nhiên n để 2n+3/4n+8 có giá trị là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
a, Để\(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên thì 2n+3 \(⋮\) 4n+1
Ta có 2n+3 \(⋮\)4n+1
=> 4n+6 \(⋮\)4n+1
=> (4n+1)+5 \(⋮\)4n+1
=> 5 \(⋮\)4n+1 => 4n+1 \(\in\)Ư(5) => 4n+1 \(\in\){ -1;-5;1;5 }
Ta có bảng :
4n+1 | -1 | -5 | 1 | 5 |
4n | -2 | -6 | 0 | 4 |
n | không có | không có | 0 | 1 |
Mà n \(\in\)N
+ Nếu n = 0 ta có \(\frac{2.0+3}{4.0+1}\)=\(3\)(chọn)
+ Nếu n = 1 ta có \(\frac{2.1+3}{4.1+1}=5\) (chọn )
Vậy n=0 hoặc n=1 thì phân số \(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
b, Gọi d \(\in\)UC(2n+3;4n+1)
Ta có 2n+3 \(⋮\)d => 2.(2n+3)\(⋮\)d
4n+1 \(⋮\)d
Suy ra 2(2n+3) - (4n+1) \(⋮\)d
4n+6 - 4n+1 \(⋮\)d
5 \(⋮\)d => d \(\in\)Ư(5) => d\(\in\){ -1 ; -5; 1 ; 5 }
+ Nếu 2n+3 \(⋮\)5 => 6n +9 \(⋮\)5
(5n+5).(n+4) \(⋮\)5
n+4 \(⋮\)5 => n = 5k - 4 (k \(\in\)N*)
Thì 4n+1 = 4(5k - 4) +1= 20k - 16 +1 = 20k -15 \(⋮\)5
Vậy n \(\ne\) 5k - 4 (k \(\in\)N*) thì phân số \(\frac{2n+3}{4n+1}\)tối giản
1, A=\(\frac{2n+3}{\text{4n + 1}}\)
A=\(\frac{4n+6}{\text{4n + 1}}\)
A=\(\frac{4n+1+5}{\text{4n + 1}}\)
A=1+\(\frac{5}{\text{4n + 1}}\)
Để A là số tự nhiên\(\Leftrightarrow\)1+\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\)\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\) 5\(⋮\)(4n+1)\(\Leftrightarrow\)(4n+1)\(\in\)Ư(5)={-5;-1;1;5}\(\Leftrightarrow\)4n\(\in\){-6;-2;0;4}\(\Leftrightarrow\)n\(\in\){\(\frac{-3}{2}\);\(\frac{-1}{2}\);0;1}. Mà n là số tự nhiên nên n\(\in\){0;1}.
Vậy n\(\in\){0;1} thì A là số tự nhiên
2n+3/4n+8 nguyên
<=> 2n+3 ⋮ 4n+8
=> 2(2n + 3) ⋮ 4n + 8
=> 4n + 6 ⋮ 4n + 8
=> 4n+8 - 2 ⋮ 4n + 8
=> 2 ⋮ 4n + 8
Để 2n + 3/ 4n + 8 có giá trị nguyên thì: \(2n+3⋮4n+8\)
\(\Rightarrow2.\left(2n+3\right)-\left(4n+8\right)⋮4n+8\)
\(\Rightarrow4n+6-4n-8⋮4n+8\)
\(\Rightarrow-2⋮4n+8\Rightarrow4n+8\inƯ\left(-2\right)\)
Mà 4n + 8 là số chẵn \(\Rightarrow4n+8\in\left\{-1;1\right\}\)
\(\Rightarrow4n\in\left\{-9;-7\right\}\Rightarrow n\in\left\{\frac{-9}{4};\frac{-7}{4}\right\}\)