K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

Xét 2 TH .

TH1 2x-1/2 nhỏ hơn 0 và 3x-1/3 lớn hơn 0

TH2: ngược lại TH1

\(\left(2x-\frac{1}{2}\right).\left(3x-\frac{1}{3}\right)< 0\)

\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{2}< 0;3x-\frac{1}{3}>0\\2x-\frac{1}{2}>0;3x-\frac{1}{3}< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x< \frac{1}{2};3x>\frac{1}{3}\\2x>\frac{1}{2};3x< \frac{1}{3}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}:2;x>\frac{1}{3}:3\\x>\frac{1}{2}:2;x< \frac{1}{3}:3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x< \frac{1}{4};x>\frac{1}{9}\\x>\frac{1}{4};x< \frac{1}{9}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\frac{1}{9}< x< \frac{1}{4}\\\frac{1}{4}< x< \frac{1}{9}\left(loai\right)\end{cases}}\)

4 tháng 9 2019

th1\(\hept{\begin{cases}2x-\frac{1}{2}>0\\3x-\frac{1}{3}< 0\end{cases}}\)=>\(\hept{\begin{cases}x>\frac{1}{4}\\x< \frac{1}{9}\end{cases}}\)(vôlis

th2 tương tự suy ra 1/9<x<1/4

4 tháng 9 2019

Xảy ra 2 TH :

TH1 : \(\hept{\begin{cases}2x-\frac{1}{2}< 0\\3x-\frac{1}{3}>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x< \frac{1}{2}\\3x>\frac{1}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x< \frac{1}{4}\\x>9\end{cases}}\) ( vô lí ) \(\Rightarrow\) loại

TH2 : \(\hept{\begin{cases}2x-\frac{1}{2}>0\\3x-\frac{1}{3}< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x>\frac{1}{2}\\3x< \frac{1}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>\frac{1}{4}\\x< 9\end{cases}}\) ( thỏa mãn )

Vậy : \(\frac{1}{4}< x< 9\) thì \(\left(2x-\frac{1}{2}\right)\left(3x-\frac{1}{3}\right)< 0\)

16 tháng 8 2019

1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)

=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)

b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c) TT

16 tháng 8 2019

a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)

\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)

=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)

=> \(\left|50x-140\right|=\left|25x+24\right|\)

=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)

=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)

Bài 2 : a. |2x - 5| = x + 1

 TH1 : 2x - 5 = x + 1

    => 2x - 5 - x = 1

    => 2x - x - 5 = 1

    => 2x - x = 6

    => x = 6

TH2 : -2x + 5 = x + 1

   => -2x + 5 - x = 1

   => -2x - x + 5 = 1

   => -3x = -4

   => x = 4/3

Ba bài còn lại tương tự

10 tháng 10 2019

a, (3x - 5)(2x - 1) - (x + 2)(6x - 1) = 0

=> 6x^2 - 3x - 10x + 5 - (6x^2 - x + 12x - 2) = 0

=> 6x^2 - 13x + 5 - 6x^2 - 11x + 2 = 0

=> -24x + 7 = 0 

=> - 24x = -7

=> x = 7/24

b, (3x - 2)(3x + 2) - (3x - 1)^2 = -5

=> 9x^2 - 4 - 9x^2 + 6x - 1 = -5

=> 6x - 5 = -5

=> 6x = 0

=> x = 0

c, x^2 = -6x - 8

=> x^2 + 6x + 8 = 0

=> x^2 + 2.x.3 + 9 - 1 = 0

=> (x + 3)^2 = 1

=> x + 3 = 1 hoặc x + 3 = -1

=> x = -2 hoặc x = -4

4 tháng 12 2017

a)\(\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow6x=36\Leftrightarrow x=6\)

26 tháng 6 2018

a) Qui đồng rồi khử mẫu ta được:

   3(3x+2)-(3x+1)=2x.6+5.2

<=> 9x+6-3x-1 = 12x+10

<=> 9x-3x-12x  = 10-6+1

<=> -6x            = 5

<=> x               = -5/6

Vậy ....

b) ĐKXĐ: \(x\ne\pm2\)

Qui đồng rồi khử mẫu ta được:

   (x+1)(x+2)+(x-1)(x-2) = 2(x2+2)

<=> x2+3x+2+x2-3x+2 = 2x2+4

<=> x2+x2-2x2+3x-3x = 4-2-2

<=> 0x             = 0

<=> x vô số nghiệm

Vậy x vô số nghiệm với x khác 2 và x khác -2

c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)

\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)

Vậy ...... 

d) (x+1)2-4(x2-2x+1) = 0

<=> x2+2x+1-4x2+8x-4 = 0

<=> -3x2+10x-3 = 0

giải phương trình

1 tháng 8 2019

a) \(\left|0,5x-2\right|-\left|x+\frac{1}{3}\right|=0\)

=> \(\left|0,5x-2\right|=\left|x+\frac{1}{3}\right|\)

=> \(\orbr{\begin{cases}0,5x-2=x+\frac{1}{3}\\0,5x-2=-x-\frac{1}{3}\end{cases}}\)

=> \(\orbr{\begin{cases}-0,5x=\frac{7}{3}\\1,5x=\frac{5}{3}\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{14}{3}\\x=\frac{10}{9}\end{cases}}\)

b) \(2x-\left|x+1\right|=\frac{1}{2}\)

=> \(\left|x+1\right|=2x-\frac{1}{2}\) (Đk: \(2x-\frac{1}{2}\ge0\) <=> \(x\ge\frac{1}{4}\))

=> \(\orbr{\begin{cases}x+1=2x-\frac{1}{2}\\x+1=\frac{1}{2}-2x\end{cases}}\)

=> \(\orbr{\begin{cases}-x=-\frac{3}{2}\\3x=-\frac{1}{2}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{6}\end{cases}}\)