K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

\(a,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0.abc=0\)

\(a+b+c=1=>\left(a+b+c\right)^2=1=>a^2+b^2+c^2+2ab+2bc+2ac=1\)

\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=1=>a^2+b^2+c^2=1-0=1\) (vì ab+bc+ac=0)

\(b,S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)-3\)

\(=2014.\frac{1}{2014}-3=1-3=-2\)

Vậy.....................

27 tháng 4 2016

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

\(\Rightarrow S=\left(\frac{a+b+c}{b+c}\right)+\left(\frac{a+b+c}{c+a}\right)+\left(\frac{a+b+c}{a+b}\right)-3\)

\(\Rightarrow S=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3=2016.\frac{1}{90}-3=\frac{97}{5}\)

Vậy....................

31 tháng 7 2017

Vì a+b+c=0

\(\Rightarrow a=-\left(b+c\right)\)

\(\Rightarrow a^2=\left[-\left(b+c\right)\right]^2=b^2+2bc+c^2\)

Do đó  \(\frac{1}{b^2+c^2-a^2}=\frac{1}{b^2+c^2-b^2-2bc-c^2}=-\frac{1}{2bc}\)

Tương tự  \(\frac{1}{c^2+a^2-b^2}=-\frac{1}{2ca}\)  và  \(\frac{1}{a^2+b^2-c^2}=-\frac{1}{2ab}\)

Do đó  \(S=-\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=-\frac{1}{2}.\frac{a+b+c}{abc}=0\)

8 tháng 11 2015

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3=2015.\frac{1}{90}-3=19\frac{7}{18}\)

17 tháng 1 2016

lay ong di qua lay ba di lai cho xin may tick