Cho a + b \(\ne\)0 . Tìm min A = \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\)
Giúp mình với T.T
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=\frac{a}{b}+\frac{b}{a}\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}=x^2-2\)
Xét mẫu thức : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)=x^2-x-2=\left(x+1\right)\left(x-2\right)\)
Thay \(x=\frac{a}{b}+\frac{b}{a}\) được mẫu thức : \(\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)=\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}\)
Ta có : \(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{a^2b^2}}{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}}\)
\(=\frac{\left(a-b\right)^2}{a^2b^2}.\frac{ab}{\left(a-b\right)^2}=\frac{1}{ab}\) (đpcm)
b) Áp dụng bđt Cauchy :
\(1=4a+b+\sqrt{ab}\ge2\sqrt{4a.b}+\sqrt{ab}\)
\(\Rightarrow5\sqrt{ab}\le1\Rightarrow ab\le\frac{1}{25}\)
\(\Rightarrow P=\frac{1}{ab}\ge25\) . Dấu "=" xảy ra khi \(\begin{cases}4a+b+\sqrt{ab}=1\\4a=b\end{cases}\)
\(\Leftrightarrow\begin{cases}a=\frac{1}{10}\\b=\frac{2}{5}\end{cases}\)
Vậy P đạt giá trị nhỏ nhất bằng 25 tại \(\left(a;b\right)=\left(\frac{1}{10};\frac{2}{5}\right)\)
pn ơi , bđt cauchy : \(a+b\ge2\sqrt{ab}\)
s lại là \(2\sqrt{4a.b}+\sqrt{ab}\)
\(A=\left(a+b\right)^2+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}-2ab\)
\(A\ge2\left(ab+1\right)-2ab=2\)
\(\Rightarrow A_{min}=2\) khi \(\left(a;b\right)=\left(0;\pm1\right)\) và hoán vị
Bài làm:
Bài 1:
Ta có: \(T=8x^2-4x+\frac{1}{4x^2}+15\)
\(=\left(4x^2-4x+1\right)+\left(4x^2+\frac{1}{4x^2}\right)+14\)
\(=\left(2x-1\right)^2+\left(4x^2+\frac{1}{4x^2}\right)+14\)\(\ge0+2\sqrt{4x^2.\frac{1}{4x^2}}+14=2+14=16\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-1\right)^2=0\\4x^2=\frac{1}{4x^2}\end{cases}\Rightarrow x=\frac{1}{2}}\)
Vậy \(Min\left(T\right)=16\)khi \(x=\frac{1}{2}\)
Bài 2:
Ta có: \(ab+bc+ca=3abc\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=3\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\left(1\right)\)
Ta xét \(\frac{a^2}{c\left(c^2+a^2\right)}=\frac{\left(c^2+a^2\right)-c^2}{c\left(c^2+a^2\right)}=\frac{1}{c}-\frac{c}{c^2+a^2}=\frac{1}{c}-\frac{1}{a}.\frac{ac}{c^2+a^2}\ge\frac{1}{c}-\frac{1}{a}.\frac{ac}{2ac}=\frac{1}{c}-\frac{1}{2}a\)
Tương tự ta chứng minh được: \(\frac{b^2}{a\left(a^2+b^2\right)}\ge\frac{1}{a}-\frac{1}{2}b\)và \(\frac{c^2}{b\left(b^2+c^2\right)}\ge\frac{1}{b}-\frac{1}{2}c\)
Cộng vế 3 bất đẳng thức trên lại ta được:
\(P\ge\frac{1}{c}-\frac{1}{2}a+\frac{1}{a}-\frac{1}{2}b+\frac{1}{b}-\frac{1}{2}c\)\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}.3=\frac{3}{2}\left(theo\left(1\right)\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}a^2=b^2\\b^2=c^2\\c^2=a^2\end{cases}\Rightarrow a=b=c=1}\)
Vậy \(Min\left(P\right)=\frac{3}{2}\)khi \(a=b=c=1\)
Học tốt!!!!
Ta có: \(P=\Sigma\frac{\left(\frac{1}{c^2}\right)}{\left(\frac{1}{a}+\frac{1}{b}\right)}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{2}\ge\frac{\left(\frac{9}{a+b+c}\right)}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi a =b =c = 1.
True?
Ta có :
\(P=\frac{ab}{c^2\left(a+b\right)}+\frac{ac}{b^2\left(a+c\right)}+\frac{bc}{a^2\left(b+c\right)}\)
\(\Rightarrow P=\frac{\left(\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}}+\frac{\left(\frac{1}{b}\right)^2}{\frac{1}{c}+\frac{1}{a}}+\frac{\left(\frac{1}{a}\right)^2}{\frac{1}{c}+\frac{1}{b}}\)
\(\Rightarrow P\ge\frac{\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}}\)
\(\Rightarrow P\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)
\(\Rightarrow P\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow P\ge\frac{1}{2}.\frac{9}{a+b+c}\)
\(\Rightarrow P\ge\frac{3}{2}\)
Dấu = xảy ra khi a=b=c=1
a, Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x,y>0\)
Ta có: \(A=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+\frac{4}{a+b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
b, Áp dụng \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Áp dụng \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x,y,z>0\)
Ta có: \(B=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2+\left(1+\frac{1}{c}\right)^2\ge\frac{\left(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\ge\frac{\left(3+\frac{9}{a+b+c}\right)^2}{3}\ge\frac{\left(3+6\right)^2}{3}=27\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)
* Các BĐT phụ bạn tự CM nha! Chúc bạn học tốt
Chị tham khảo tại đây: Câu hỏi của vũ thị ánh dương - Toán lớp 8