K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Lời giải:

Đặt \(x+\frac{\sqrt{2}+1}{2}=a\). Khi đó PT đã cho trở thành:

\((a+\frac{\sqrt{2}-1}{2})^4+(a-\frac{\sqrt{2}-1}{2})^4=33+12\sqrt{2}\)

\(\Leftrightarrow 2a^4+12a^2.(\frac{\sqrt{2}-1}{2})^2+2(\frac{\sqrt{2}-1}{2})^4=33+12\sqrt{2}\)

Coi đây là PT bậc 2 ẩn $a^2$.

\(\Delta'=36(\frac{\sqrt{2}-1}{2})^4-4(\frac{\sqrt{2}-1}{2})^4+2(33+12\sqrt{2})=100\)

\(\Rightarrow \left[\begin{matrix} a^2=\frac{-6(\frac{\sqrt{2}-1}{2})^2-10}{2}< 0(\text{loại})\\ a^2=\frac{-6(\frac{\sqrt{2}-1}{2})^2+10}{2}\end{matrix}\right.\)

Vậy \(a^2=\frac{-6(\frac{\sqrt{2}-1}{2})^2+10}{2}=\frac{11+6\sqrt{2}}{4}\)

\(\Rightarrow \left[\begin{matrix} a=\frac{3+\sqrt{2}}{2}\\ a=\frac{-3-\sqrt{2}}{2}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=-2-\sqrt{2}\end{matrix}\right.\)

Vậy....

19 tháng 6 2021

Đk:\(x\ge1;x\le-2\)

Đặt \(t=\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}\)

\(\Rightarrow t^2=\left(x-1\right)\left(x+2\right)\)

Pttt: \(t^2+4t=12\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-6\end{matrix}\right.\)

TH1: \(t=2\Rightarrow\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}=2\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-1\right)\left(x+2\right)=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x^2+x-6=0\end{matrix}\right.\)\(\Rightarrow x=2\) (thỏa mãn)

TH2:\(t=-6\Rightarrow\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}=-6\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1< 0\\\left(x-1\right)\left(x+2\right)=36\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x^2+x-38=0\end{matrix}\right.\)\(\Rightarrow x=\dfrac{-1-3\sqrt{17}}{2}\) (thỏa mãn)

Vậy...

19 tháng 6 2021

Cho em hỏi là đk x>1 => x-1>0 => t>0 chứ ạ. Em cảm ơn nhiều ạ.

NV
26 tháng 2 2023

a.

\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)

\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)

\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)

\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

NV
26 tháng 2 2023

b.

ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)

\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)

\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)

\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)

Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)

22 tháng 7 2021

mong mọi người giải giúp em vs gianroigianroi

NV
3 tháng 11 2021

Chú ý:

\(\left(x^2+2x\right)^2+4\left(x+1\right)^2=\left(x^2+2x\right)^2+4\left(x^2+2x+1\right)=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+4\)

\(=\left(x^2+2x+2\right)^2\)

\(x^2+\left(x+1\right)^2+\left(x^2+x\right)^2\)

\(=\left(x^2+x\right)+x^2+x^2+2x+1\)

\(=\left(x^2+x\right)^2+2x^2+2x+1\)

\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)

\(=\left(x^2+x+1\right)^2\)

3 tháng 11 2021

èo =))