K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(100-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)\)

\(=(1-1)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}+\frac{2}{3}...+\frac{99}{100}\)

12 tháng 5 2017

\(Cm:\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)

Gọi biểu thức trên là A, ta có:

3A = 1-2/3+3/3^2-...-100/3^99

3A + A = [1-2/3+3/3^2-...-100/3^99] + [1/3-2/3^2+3/3^3-...-100/3^100]

4A = 1 - 1/3 + 1/3^2 - ... - 1/3^99 - 100/3^99 [1]

Gọi B = 1-1/3 + 1/3^2 - ... - 1/3^99

3B = 3 - 1 + 1/3 - 1/3^2 -...-1/3^2012

3B + B = [3-1+1/3-1/3^2-...-1/3^2012] + [1-1/3 + 1/3^2 - ... - 1/3^99]

4B = 3 - 1/3^99 

=> 4B < 3 => B < 1/4 [2]

Từ [1], [2] => 4A < B < 3/4 => A < 3/16 [đpcm]

MỎI TAY QUỚ

tk nha

12 tháng 5 2017

Lúc đặt câu hỏi, bạn bấm vào góc trên cùng bên trái để gõ phép tính đẹp. Ý của bạn có phải là:

\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)

7 tháng 3 2016

Ta có:

M=\(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\)

M=\(\frac{1.3....99}{2.4....100}\)

Lại có:

N=\(\frac{2}{3}.\frac{4}{5}....\frac{100}{101}\)

N=\(\frac{2.4....100}{3.5....101}\)

\(\Rightarrow\)M.N=\(\frac{1.2.3......99.100}{2.3.4......100.101}\)

\(\Rightarrow\)M.N=\(\frac{1}{101}\)

12 tháng 4 2022

?

12 tháng 4 2022

sao v ạ? em mới sửa r đó ạ

11 tháng 10 2023

loading...  loading...  

30 tháng 1 2016

\(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3}\)

....

\(\frac{1}{100^2}=\frac{1}{100.100}<\frac{1}{99.100}\)

do đó \(A<\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}<1\)

=>A<1

30 tháng 1 2016

sẽ là 1/4+1/9+1/16........tổng sẽ ko lớn hơn 1

2 tháng 5 2023

`A=1/(1xx2)+1/(2xx3)+1/(3xx4)+...+1/(99xx100)`

`=> A=(2-1)/(1xx2)+(3-2)/(2xx3)+...+(100-99)/(99xx100)`

`=> A=1-1/2+1/2-1/3+...+1/99-1/100`

`=> A=1-1/100`

`=> A=99/100

2 tháng 5 2023

Sửa đề:

A = 1/(1.2) + 1/(2.3) + 1/(3.4) + ... + 1/(97.98) + 1/(98.99) + 1/(99.100)

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100

= 1 - 1/100

= 99/100

1/1002 + 1/1012 + ... + 1/1992 < 1/99.100 + 1/100.101 + ... + 1/198.199 = 1/99 - 1/100 + 1/100 - 1/101 + ... + 1/198 - 1/199 = 1/99 - 1/199

\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/199< 1/99 (vì 1/99 đã lớn hơn 1/99 - 1/199 rồi mà G lại còn bé hơn 1/99 - 1/199 nữa)

1/1002 + 1/1012 + ... + 1/1992 > 1/100.101 + ... + 1/199.200 = 1/100 - 1/101 + ... + 1/199 - 1/200 = 1/100 - 1/200 = 1/200

\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/199 > 1/200

26 tháng 8 2019

a

\(A=1+3+3^2+3^3+....+3^{100}\)

\(3A=3+3^2+3^3+3^4+.....+3^{101}\)

\(2A=3^{101}-1\)

\(A=\frac{3^{101}-1}{2}\)

b

\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(B=1-\frac{1}{2^{99}}\)

c

\(C=5^{100}-5^{99}+5^{98}-5^{97}+....+5^2-5+1\)

\(5C=5^{101}-5^{100}+5^{99}-5^{98}+....+5^3-5^2+5\)

\(6C=5^{101}+1\)

\(C=\frac{5^{101}+1}{6}\)

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)

\(\Rightarrow\frac{1}{2}B=\)\(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}\)

\(\Rightarrow B-\frac{1}{2}B=\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\right]-\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{100}\right]\)

\(\Rightarrow\frac{1}{2}B=\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\Rightarrow B=\left[\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\right].2\)