Cho P (x) là đa thức bậc bốn và có hệ số của bậc cao nhất là 1. Biết P (2016)=2017 P (2017)=2018 P (2018)=2019 P (2019)=2020.
Chứng minh P (2020) là một số tự nhiên chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(Q\left(x\right)=P\left(x\right)-\left(x+1\right)\)
\(\Rightarrow Q\left(2016\right)=Q\left(2017\right)=0\)
Vì P(x) là đa thức bậc ba có hệ số bậc cao nhất là 1 nên Q(x) cũng là đa thức bậc ba có hệ số bậc cao nhất là 1
\(\Rightarrow\)Q(x) có dạng \(\left(x-2016\right)\left(x-2017\right)\left(x-a\right)\)(a là hằng số)
\(\Rightarrow P\left(x\right)=\left(x-2016\right)\left(x-2017\right)\left(x-a\right)+\left(x+1\right)\)
\(\Rightarrow\hept{\begin{cases}-3P\left(2018\right)=-6\left(2018-a\right)-6057\\P\left(2019\right)=6\left(2019-a\right)+2020\end{cases}}\)
\(\Rightarrow-3P\left(2018\right)+P\left(2019\right)=6\left(2019-a+a-2018\right)-4037\)
\(=6.1-4037=-4031\)
Vậy \(-3P\left(2018\right)+P\left(2019\right)=-4031\)
Lời giải:
Sử dụng công thức nội suy Newton:
$f(x)=a_1+a_2(x-2017)+a_3(x-2017)(x-2018)+a_4(x-2017)(x-2018)(x-t)$ với $a_4$ nguyên dương, $a_1,a_2, a_3, t$ bất kỳ.
Ta có:
$f(2017)=a_1=2018$
$f(2018)=a_1+a_2=2019$
$\Rightarrow a_2=1$. Thay giá trị $a_1,a_2$ vào lại $f(x)$ thì:
$f(x)=x+1+a_3(x-2017)(x-2018)+a_4(x-2017)(x-2018)(x-t)$
Do đó:
$f(2019)=2020+2a_3+2a_4(2019-a)$
$f(2016)=2017+2a_3+2a_4(2016-a)$
$\Rightarrow f(2019)-f(2016)=3+6a_4\vdots 3$ với mọi $a_4$ nguyên dương.
Cũng dễ thấy $3+6a_4>3$ với mọi $a_4$ nguyên dương
Do đó $f(2019)-f(2016)$ là hợp số (đpcm)
Vì:
khi tính bài toán 2015/2016 + 2016/2017 + 2017/2018 + 2018/2019 + 2019/2020 + 2020/2015 này ra thì ta được con số là 6,000003688 con số này phải lớn hơn số 6 nên: 6,000003688 > 6
Vì:khi tính bài toán 2015/2016+2016/2017+2017/2018+2018/2019+ 2019/2020+2020/2015 ta ra được là: 6,000003688 nên: 6,000003688 > 6
Đặt \(K\left(x\right)=P\left(x\right)-\left(x+1\right)\)
\(\Rightarrow K\left(2016\right)=K\left(2017\right)=K\left(2018\right)=K\left(2019\right)=0\)
Vì P(x) có hệ số của bậc cao nhất bằng 1 nên K(x) cũng có hệ số của bậc cao nhất bằng 1
Do đó K(x) có dạng \(\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
Lúc đó \(P\left(x\right)=\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
\(+\left(x+1\right)\Rightarrow P\left(2020\right)=2045⋮5\)
Vậy P(2020) là một số tự nhiên chia hết cho 5 (đpcm)