K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2019

A B C D E F H I N M T K O F

Ta có tứ giác AEDB nội tiếp (AB), tứ giác BFEC nội tiếp (BC) nên ^CID = ^CED = ^ABD = ^AEF = ^MEN

=> Tứ giác MINE nội tiếp => ^EMN = ^EIN = ^ECT => Tứ giác EMCT nội tiếp

Áp dụng hệ thức lượng trong đường tròn: NM.NT = NE.NC = NF.NK => Tứ giác MKTF nội tiếp

=> ^FKT = ^FMT = ^HMN. Cũng từ tứ giác MINE nội tiếp ta suy ra ^EMN = ^ECT = ^AFE

=> MN // AF. Mà AF vuông góc CH nên MN vuông góc CH

Kết hợp với ^HFC chắn nửa đường tròn (O) suy ra ^HMN = ^HCF (Cùng phụ ^MHC)

Do đó ^FKT = ^HCF = ^FKH. Vì H,T nằm cùng phía so với FK nên KT trùng KH

Vậy thì H,K,T thẳng hàng (đpcm).

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

Tâm I là trung điểm của AH

a) Xét tứ giác DHEC có 

\(\widehat{HDC}\) và \(\widehat{HEC}\) là hai góc đối

\(\widehat{HDC}+\widehat{HEC}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: DHEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

23 tháng 11 2023

Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

\(\widehat{DBH}\) chung

Do đó: ΔBDH đồng dạng với ΔBEC
=>\(\dfrac{BD}{BE}=\dfrac{BH}{BC}\)

=>\(BH\cdot BE=BD\cdot BC\)

Xét ΔCDH vuông tại D và ΔCFB vuông tại F có

\(\widehat{DCH}\) chung

Do đó: ΔCDH đồng dạng với ΔCFB

=>\(\dfrac{CD}{CF}=\dfrac{CH}{CB}\)

=>\(CH\cdot CF=CD\cdot CB\)

ΔEBC vuông tại E

mà EI là đường trung tuyến

nên \(BC=2\cdot EI\)

=>\(BC^2=4\cdot EI^2\)

\(BH\cdot BE+CH\cdot CF\)

\(=BD\cdot BC+CD\cdot BC\)

\(=BC^2=4\cdot IE^2\)

14 tháng 3 2021

ai đó làm giúp với