So sánh A = 2017/2018 + 2018/2019+2019/2019 với 3
GIÚP MÌNH NHA , MÌNH CẦN GẤP LẮM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{10^{2019}-1}{10^{2018}-1}< \frac{10^{2019}-1+11}{10^{2018}-1+11}=\frac{10^{2019}+10}{10^{2018}+10}=\frac{10\left(10^{2018}+1\right)}{10\left(10^{2017}+1\right)}=\frac{10^{2018}+1}{10^{2017}+1}\)
Vậy \(\frac{10^{2019}-1}{10^{2018}-1}< \frac{10^{2018}+1}{10^{2017}+1}\)
Ta có : \(0< \frac{2017}{2018}< 1\) nên \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)
\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)
Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)
Vậy B>A
Ta có :
\(A=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Vì :
\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)
\(\frac{2018}{2018+2019}< \frac{2018}{2019}\)
Nên \(\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}\) ( cộng theo vế )
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Mình thấy là A<B.
Tách A=2017+2018/2018+2019=2017/2018+2019 + 2018/2018+2019
Ta thấy từng số hạng của A lần lượt nhỏ hơn số hạng của B
=> A<B
Ta có 5/6 < 6/7
=> (5^2017 . 5) / (6^2018.6)<(5^2017 . 6) / (6^2018.7)
=>5^2018/6^2019< 5^2018+5 /6^2019 +6
a) \(\frac{1995}{1997}\)và \(\frac{1995}{1996}\)
Ta có : \(\frac{1995}{1996}=\frac{1995\times2}{1996\times2}=\frac{3990}{3992}\)
\(1-\frac{1995}{1997}=\frac{2}{1997};1-\frac{3990}{3992}=\frac{2}{3992}\)
Vì \(\frac{2}{1997}>\frac{2}{3992}\)nên \(\frac{1995}{1997}< \frac{3990}{3992}\)hay \(\frac{1995}{1997}< \frac{1995}{1996}\).
b) \(\frac{2016}{2017}\)và \(\frac{2017}{2018}\)
Ta có : \(1-\frac{2016}{2017}=\frac{1}{2017};1-\frac{2017}{2018}=\frac{1}{2018}\)
Vì \(\frac{1}{2017}>\frac{1}{2018}\)nên \(\frac{2016}{2017}< \frac{2017}{2018}\).
c) \(\frac{2018}{2019}\)và \(\frac{2017}{2016}\).
Vì \(\frac{2018}{2019}< 1;1< \frac{2017}{2016}\)nên \(\frac{2018}{2019}< \frac{2017}{2016}\).
~ HOK TỐT ~
#)Giải :
Ta có : \(A=\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2019}< 1+1+1\)
\(\Rightarrow A< 3\)
Mình giải thế này cho ngắn gọn, với lại nhanh ^^
mình chưa hiểu lắm