Cho n thuộc N . Chứng minh :
Số n5 và n có chữ số tận cùng giống nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hiệu : \(n^5-n\)
Đặt : \(A\text{=}n^5-n\)
Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)
\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)
Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .
\(\Rightarrow A⋮2\)
Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)
\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)
\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)
Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.
Do đó : \(A⋮10\)
\(\Rightarrow A\) có chữ số tận cùng là 0.
Suy ra : đpcm.
b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)
Với : n= 3k+1
Thì : \(n^2\text{=}9k^2+6k+1\)
Do đó : \(n^2\) chia 3 dư 1.
Với : n=3k+2
Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)
Do đó : \(n^2\) chia 3 dư 1.
Suy ra : đpcm.
Coi chữ số tận cùng của n là h
Với n lẻ :
\(n^5=n^4.n=\left(...1\right).n=\left(..1\right)\left(...a\right)=\left(...a\right)\)
Tương tự với n chẵn :
\(n^5=n^4.n=\left(...6\right).n=\left(..6\right)\left(...a\right)=\left(...a\right)\)
Vậy ...
Không hiểu nổi @trần thùy dung CTV viết cái gì nữa:
\(A=n^5-n\)
A chia hết cho 5 với mọi n thuộc N (*)
\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)=> A chia hết cho 2 (**)
(*)&(**)=> A chia hết cho 10=> A tận cùng là 0 vậy n^5 và n có số tận cùng = nhau=> dpcm
p/s: (*) nếu cần có thể c/m nhưng nó thuộc t/c do vậy ko cần c/m nữa
Nếu n và n5 có chữ số tận cùng giống nhau
⇒n5−n⋮10⇒n5−n⋮10
Ta có:
n5−nn5−n
=n(n4−1)=n(n4−1)
=n(n2−1)(n2+1)=n(n2−1)(n2+1)
=n(n−1)(n+1)(n2−4+5)=n(n−1)(n+1)(n2−4+5)
=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)
=n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)=n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)
Vì n(n−1)(n+1)(n−2)(n+2)n(n−1)(n+1)(n−2)(n+2) là tích của 5 số tự nhiên liên tiếp
⇒n(n−1)(n+1)(n−2)(n+2)⋮5⇒n(n−1)(n+1)(n−2)(n+2)⋮5
Vì n(n−1)n(n−1) là tích của hai số tự nhiên liên tiếp
⇒n(n−1)(n+1)(n−2)(n+2)⋮2⇒n(n−1)(n+1)(n−2)(n+2)⋮2
⇒n(n−1)(n+1)(n−2)(n+2)⋮10(1)⇒n(n−1)(n+1)(n−2)(n+2)⋮10(1)
Ta có: 5n(n−1)(n+1)(n−2)(n+2)⋮55n(n−1)(n+1)(n−2)(n+2)⋮5
Vì n(n−1)n(n−1) là tích của hai số tự nhiên liên tiếp
⇒5n(n−1)(n+1)⋮2⇒5n(n−1)(n+1)⋮2
⇒5n(n−1)(n+1)⋮10(2)⇒5n(n−1)(n+1)⋮10(2)
Từ (1) và (2) suy ra
n(n+1)(n−1)(n−2)(n+2)+5n(n−1)(n+1)⋮10n(n+1)(n−1)(n−2)(n+2)+5n(n−1)(n+1)⋮10
⇒n5−n⋮10⇒n5−n⋮10
Vậy n và n5 có chữ số tận cùng giống nhau
hok tốt
Ta có: \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2-4+5\right)=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2+1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)\left(n+1\right)\)
Ta thấy (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiếp đồng thời chia hết cho 2 và 5
hay (n-2)(n-1)n(n+1)(n+2) chia hết cho 10 (1)
Ta lại có: (n-1)n(n+1) là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 2
=> 5(n-1)(n+1) chia hết cho 10 (2)
Từ (1)(2) => \(n^5-n\)chia hết cho 10 hay có chữ số tận cùng là 0
=> đpcm
xét từng chữ số tận cùng của n
VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1
Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2
Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3
........
Theo mình là như thế
xét từng chữ số tận cùng của n
VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1
Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2
Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3
........
Tự tìm nha
Lay 4 chu so thi dong du voi 10000
5^1994=5^2*(5^4)^498
5^4=625 dong du 625 mod 10000
625^2=390625 dong du 625 mod 10000
=>625^n luon dong du 625 mod 10000
=>(5^4)^498 dong du 625 mod 10000
=>(5^2)*(5^4)^498 dong du (5^2)*625 mod 10000
hay la 5^1994 dong du 15625 mod 10000
Vay 4 chu so tan cung cua 5^1994 la 5625
kết luận chữ số tận cũg có 4 chữ số
Nếu n và n5 có chữ số tận cùng giống nhau
\(\Rightarrow n^5-n⋮10\)
Ta có:
\(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Vì \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\)
Vì \(n\left(n-1\right)\) là tích của hai số tự nhiên liên tiếp
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮2\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮10\left(1\right)\)
Ta có: \(5n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\)
Vì \(n\left(n-1\right)\) là tích của hai số tự nhiên liên tiếp
\(\Rightarrow5n\left(n-1\right)\left(n+1\right)⋮2\)
\(\Rightarrow5n\left(n-1\right)\left(n+1\right)⋮10\left(2\right)\)
Từ (1) và (2) suy ra
\(n\left(n+1\right)\left(n-1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮10\)
\(\Rightarrow n^5-n⋮10\)
Vậy n và n5 có chữ số tận cùng giống nhau