K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

vẽ AH vuông góc vs BC 
ta có : cot B =3 cot C => BH/AH=3HC/AH =>BH=3HC =>HC=1/4BC 
mà CM=1/2BC =>BC=2CM
suy ra : HC=1/2 CM => H là trung điểm của CM => AH là đường trung trực của tam giác AMC
mà AH cũng là đường cao của tam giác AMC => tam giác AMC là tam giác cân => AM=AC

NM
18 tháng 8 2021

undefined

Kẻ ED song song với MB ( E thuộc AC)

ta có \(\frac{CE}{EM}=\frac{CD}{DB}=1\Rightarrow CE=EM\)

mà \(CM=2MA\Rightarrow CE=EM=MA\) nên M là trung điểm của EA

mà MI lại song song với ED

nên MI là đường trung bình của tam giác EAD nên I là trung điểm AD

Vậy ta có đpcm

7 tháng 7 2018

Gọi AH là đường cao của tam giác ABC (H thuộc BC)

Ta có : cot B=\(\dfrac{BH}{AH}\);cot C= \(\dfrac{CH}{AH}\) . Theo giả thiết : cot B=3 cot C ⇒ BH = 3CH

Mà BH + CH = BC⇒ BC= 4CH⇒ CH= \(\dfrac{BC}{4}\) = \(\dfrac{2CM}{4}\) = \(\dfrac{CM}{2}\)

Vậy CH = \(\dfrac{1}{2}\) CM

Ta cũngcó: BH = BM + MH = 2CH + MH = 3CH ⇒ MH = CH

Do đó AH là đường trung trực của CM => AC = AM (đpcm)

Hình bạn tự vẽ nha máy mình không vẽ được hình học

Chúc bạn mùa hè vui vẻ

a) Xét ΔABM và ΔFCM có 

AM=FM(gt)

\(\widehat{AMB}=\widehat{FMC}\)(hai góc đối đỉnh)

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔFCM(c-g-c)

b) Xét ΔBMF và ΔCMA có 

BM=CM(M là trung điểm của BC)

\(\widehat{BMF}=\widehat{CMA}\)(hai góc đối đỉnh)

FM=AM(gt)

Do đó: ΔBMF=ΔCMA(c-g-c)

nên \(\widehat{FBM}=\widehat{ACM}\)(hai góc tương ứng)

mà \(\widehat{FBM}\) và \(\widehat{ACM}\) là hai góc ở vị trí so le trong

nên BF//AC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: ΔABM=ΔFCM(cmt)

nên \(\widehat{ABM}=\widehat{FCM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{FCM}\) là hai góc ở vị trí so le trong

nên AB//CF(Dấu hiệu nhận biết hai đường thẳng song song)