Cho hàm số f(x) thỏa mản f(2) = -1/5 và f'(x) =x3 [f(x)]2 với mọi x. tính giá trị f(1)?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
11 tháng 10 2017
Chọn đáp án C
Phương pháp
Sử dụng công thức nguyên hàm:
dựa dữ kiện đề bài tìm được C, từ đó tính F(2)-F(-1)
B
0
Ta có:
\(f'\left(x\right)=x^3\left[f\left(x\right)\right]^2\Leftrightarrow\frac{f'\left(x\right)}{\left[f\left(x\right)\right]^2}=x^3\)
Lấy nguyên hàm hai vế:
\(\int\frac{f'\left(x\right)}{\left[f\left(x\right)\right]^2}=\int x^3\Leftrightarrow-\frac{1}{f\left(x\right)}=\frac{x^4}{4}+C\)
f(2)=-1/5 <=> \(-\frac{1}{-\frac{1}{5}}=\frac{2^4}{4}+C\Leftrightarrow C=1\)
Suy ra: \(-\frac{1}{f\left(x\right)}=\frac{x^4}{4}+1\Leftrightarrow f\left(x\right)=-\frac{4}{x^4+4}\)
Thay vào rồi tính đc f(1)