K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2019

Ta có:\(x\ge\sqrt{2}\Rightarrow x^2\ge2\Rightarrow\sqrt{x^2-1}-1\ge0\) (*)

\(A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)

\(A=\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)

\(A=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)

Kết hợp với (*), ta có:

\(A=\sqrt{x^2-1}+1-\left(\sqrt{x^2-1}-1\right)=2\)

Vậy ...

5 tháng 6 2019

bạn có thể giải thích giúp mình làm sao ra được khúc A=\(\sqrt{x^2-1+1}\)\(-\left(\sqrt{x^2-1-1}\right)\) vậy

12 tháng 9 2017

đk : x ≥ 2 
Bạn bình phương 2 vế, thu gọn đc: 
3√[x(x−2)(x+1)] ≤ 2x2−6x−2 
<=> 3√[(x2−2x)(x+1)] ≤ 2(x2−2x) − 2(x+1) 
Chia 2 vế cho (x+1), đặt t= căn((x2−2x)/(x+1)), t≥ 0 ta đc: 
2t^2 - 3t - 2 ≥ 0 => t ≥ 2 
<=> x^2 - 2x ≥ 4x + 4 
<=> x^2 - 6x -4 ≥ 0 
<=> x ≥ 3+√13

P/s: Tham khảo nhé

12 tháng 9 2017

\(\sqrt{x+2\sqrt{x-4}}+\sqrt{x-2\sqrt{2x-4}}\)

\(=\sqrt{x+2\sqrt{\left(\sqrt{x}\right)^2-2^2}}+\sqrt{x-2\sqrt{\left(\sqrt{2x}\right)^2-2^2}}\)

\(=\sqrt{x+2\left(\sqrt{\left(\sqrt{x}\right)-2}\right)^2}+\sqrt{x-2\left(\sqrt{\left(\sqrt{2x}\right)-2}\right)^2}\)

\(=\sqrt{x+2.\left|\sqrt{x}-2\right|}+\sqrt{x-2.\left|\sqrt{2x}-2\right|}\)

\(=\sqrt{x+2.\left(\sqrt{x}-2\right)}+\sqrt{x-2.\left(\sqrt{2x}-2\right)}\)

\(=\sqrt{x+2\sqrt{x}-4}+\sqrt{x-2\sqrt{2x}+4}\)

\(=\left(\sqrt{x+2\sqrt{x}-4}\right)^2+\left(\sqrt{x-2\sqrt{2x}+4}\right)^2\)

\(=x+2\sqrt{x}-4+x-2\sqrt{2x}+4\)

\(=2x+2\sqrt{x}-2\sqrt{2x}\)

\(=2x+2\sqrt{x}-2\sqrt{2}.\sqrt{x}\)

\(=2x+\sqrt{x}\left(2-2\sqrt{2}\right)\)

K
28 tháng 5 2017

bạn chỉ cần cố gắng là làm được

26 tháng 7 2018

a) \(\sqrt{\dfrac{x-2\sqrt{x+1}}{x+2\sqrt{x+1}}}\) = \(\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}\) = \(\dfrac{\sqrt{x-1}}{\sqrt{x+1}}\)

b) \(\dfrac{x-1}{\sqrt{y}-1}\)\(\sqrt{\dfrac{y-2\sqrt{y+1}}{\left(x-1\right)^4}}\)

= \(\dfrac{x-1}{\sqrt{y}-1}\) \(\sqrt{\dfrac{\left(y-1\right)^4}{\left(x-1\right)^4}}\)

= \(\dfrac{x-1}{\sqrt{y}-1}\)\(\dfrac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^2}\)

= \(\dfrac{\sqrt{y-1}}{x-1}\)

Chúc bạn học tốt :3

26 tháng 7 2018

Thanks anyway <3

23 tháng 7 2016

Đặt  \(J=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)  với  \(\hept{\begin{cases}x,y,z>0\\x+y+z\le1\end{cases}}\left(i\right)\)

Áp dụng bất đẳng thức  \(B.C.S\)  cho hai bộ số thực không âm gồm có  \(\left(x^2;\frac{1}{x^2}\right)\)  và  \(\left(1^2+9^2\right),\) ta có:

\(\left(x^2+\frac{1}{x^2}\right)\left(1^2+9^2\right)\ge\left(x+\frac{9}{x}\right)^2\)

\(\Rightarrow\)  \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{x}\right)\)   \(\left(1\right)\)

Đơn giản thiết lập hai bất đẳng thức còn lại theo vòng hoán vị  \(y\rightarrow z\) , ta cũng có:

\(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(y+\frac{9}{y}\right)\)   \(\left(2\right);\)   \(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{z}\right)\)  \(\left(3\right)\)

Cộng từng vế  các bđt  \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right)\) , suy ra:

\(J\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\)

Ta có:

\(K=x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\)

\(=\left(9x+\frac{1}{x}\right)+\left(9y+\frac{1}{y}\right)+\left(9z+\frac{1}{z}\right)+8\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-8\left(x+y+z\right)\)

Khi đó, áp dụng bđt Cauchy đối với từng ba biểu thức đầu tiên, tiếp tục với bđt Cauchy-Swarz dạng Engel cho biểu thức thứ tư, chú ý rằng điều kiện đã cho  \(\left(i\right)\) , ta có:

\(K\ge2\sqrt{9x.\frac{1}{x}}+2\sqrt{9y.\frac{1}{y}}+2\sqrt{9z.\frac{1}{z}}+\frac{72}{x+y+z}-8\left(x+y+z\right)\)

     \(=6+6+6+72-8=82\)

Do đó,  \(K\ge82\)

Suy ra  \(J\ge\frac{82}{\sqrt{82}}=\sqrt{82}\)  (đpcm)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(x=y=z=\frac{1}{3}\)

30 tháng 7 2018

mk giải 1 bài lm mẩu nha .

+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)

vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)

vậy giá trị nhỏ nhất của \(A\)\(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)

mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :

30 tháng 7 2018

lộn ! là phương trình bật 2 đối với ẩn là \(\sqrt{x}\) nha :

DƯƠNG PHAN KHÁNH DƯƠNG