K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2019

Ví dụ :

\(5^2=\left(\sqrt{16}+1\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}5=\sqrt{16+1}\\5=-\sqrt{16}-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5=5\\5=-5\end{cases}}\)

30 tháng 5 2019

Đặng Viết Thái sai rồi anh ơi! Anh thử giải theo cách đưa về dạng \(A^2=B^2\) mà không xét 2 trường hợp \(\orbr{\begin{cases}A=B\\A=-B\end{cases}}\) xem có thiếu nghiệm không? :D

NV
16 tháng 4 2022

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

NV
16 tháng 4 2022

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

NV
19 tháng 1 2022

ĐKXĐ: \(x\ge0\)

\(\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow...\)

30 tháng 12 2018

\(4x^2+8x=\sqrt{2x+6}\Leftrightarrow\left(4x^2+8x\right)\left(4x^2+8x\right)=2x+6\)

\(\Leftrightarrow16x^4+64x^3+64x^2=2x+6\Leftrightarrow8x^4+32x^3+32x^2=x+3\)

\(\Leftrightarrow8x^4+32x^3+32x^2-x=3\Leftrightarrow8x^2\left(x^2+4x+4\right)-1=x+2\)

\(\Leftrightarrow8x^2.\left(x+2\right)^2-1=x+2\Leftrightarrow8x^2.\left(x+2\right)-1=1\)

\(\Leftrightarrow8x^2\left(x+2\right)=2\)

\(\Leftrightarrow x^2\left(x+2\right)=\frac{1}{4}\)

\(\Leftrightarrow x+2=\frac{1}{4x^2}\Leftrightarrow x=\frac{1-8x^2}{4x^2}\)

P/s: mk ms học lp 6 nếu sai thông cảm nhé!

30 tháng 12 2018

shitbo sai rồi nha!

ĐKXĐ: \(x\ge-3\).Thêm \(2x+\frac{25}{4}\)vào hai vế.

Phương trình đã cho tương đương với \(4x^2+10x+6\frac{1}{4}=2x+6+\sqrt{2x+6}+\frac{1}{4}\)

\(\Leftrightarrow\left(2x+\frac{5}{2}\right)^2=\left(\frac{1}{2}+\sqrt{2x+6}\right)^2\)

 Xét \(2x+\frac{5}{2}=\frac{1}{2}+\sqrt{2x+6}\Leftrightarrow2x+2=\sqrt{2x+6}\)

\(\Leftrightarrow\orbr{\begin{cases}x\ge-1\\2x^2+3x-1=0\end{cases}}\Leftrightarrow x=\frac{-3+\sqrt{17}}{4}\left(TM\right)\)

Xét \(2x+\frac{5}{2}=-\frac{1}{2}-\sqrt{2x+6}\Leftrightarrow2x+3=-\sqrt{2x+6}\) và giải tương tự.

15 tháng 3 2020

Các bước làm:

Thử nghiệm: x = 2 là nghiệm 

------> Thử xem các cách làm tất nhiên là không thể bình phương  -----> Như vậy thường thì cô sẽ nghĩ ra hai cách là liên hợp và đặt ẩn phụ

+) Cách liên hợp: Căn đầu tiên thay 2 vào kết quả 1 ; căn thứ 2 thay 2 vào đc kết quả là 3

-----------------------------------------------------------------------------------------------------------------------

Giải: ĐK: \(1\le x\le3\) ( không cần thiết phải giải luôn điều kiện ra như thế nhé!

 \(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)

<=> \(\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x^3-4x^2+4x+4-4\)

<=> \(\frac{-\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{-2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\) ( hình như là đẹp)

<=> \(\left(x-2\right)^2\left[x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}\right]=0\)( cái trong ngoặc vuông rõ ràng là > 0 với mọi  \(1\le x\le3\))

<=> x - 2 = 0 

<=> x = 2 thỏa mãn đk

29 tháng 5 2020

ĐKXĐ : ....

PT \(\Leftrightarrow\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x\left(x^2-4x+4\right)\)

\(\Leftrightarrow\frac{-x^2+4x-4}{\sqrt{-x^2+4x-3}+1}+\frac{-2x^2+8x-8}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\)

\(\Leftrightarrow\frac{\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}+x\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2=0\\\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x>0\left(loai\right)\end{cases}}\)

23 tháng 8 2020

Bạn Thanh Tùng DZ ơi sao trường hợp 2 lại loại vậy

Chưa có điều kiện của x mà

16 tháng 4 2020

Điều kiện 1 =<x=<3

\(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)

\(\Leftrightarrow\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x\left(x^2-4x+4\right)\)

\(\Leftrightarrow\frac{-x^2+4x-4}{\sqrt{-x^2+4x-3}+1}+\frac{-2x^2+8x-8}{\sqrt{-2x^2+8x+x}+3}=x\left(x-2\right)^2\)

\(\Leftrightarrow x\left(x-2\right)^2+\frac{\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+x}+3}=x\left(x-2\right)^2\)

\(\Leftrightarrow\left(x-2\right)^2\left(x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\left(x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}>0\right)\)

<=> x=2(tmđk)