Hình bình hành ABCD có \(\widehat{A}< 90^o\). \(S_{ABCD}=\frac{81\sqrt{3}}{2}cm^2\) có AB = 6cm, AD = 13,5 cm. Số đo của \(\widehat{ABC}=...\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
VH
11 tháng 6 2019
Vẽ AA', BB' ⊥ BC (A', B' ∈ BC). Khi đó:
-Tam giác AA'D vuông cân tại A' => AA'=DA'
-Tam giác BB'C là nửa tam giác đều với ∠B=600
=> \(B'C=\sqrt{3}BB'=\sqrt{3}AA'\)
ABB'A' là hình chữ nhật nên AB = A'B' = \(2\sqrt{3}\) cm
CD = DA'+A'B'+B'C = \(AA'+2\sqrt{3}+\sqrt{3}AA'\) = 12 (cm)
=> \(AA'=\frac{12-2\sqrt{3}}{\sqrt{3}+1}=\frac{\left(12-2\sqrt{3}\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
=\(\frac{14\sqrt{3}-18}{2}=7\sqrt{3}-9\) (cm)
SABCD= (AB+CD).AA'/2= \(\left(6+\sqrt{3}\right)\left(7\sqrt{3}-9\right)\)= \(33\sqrt{3}-33\) cm2
( Chắc là kết quả như này :D )
NV
Nguyễn Việt Lâm
Giáo viên
23 tháng 8 2021
Đề bài không đúng, nhìn biểu thức \(-2CD.CD...\) là thấy sai rồi