K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2019

\(\frac{\sqrt{9+12a+4a^2}}{\sqrt{b^2}}\)

\(=\frac{\sqrt{\left(2a+3\right)^2}}{\sqrt{b^2}}\)

\(=\frac{2a+3}{-b}\)( theo điều kiện )

18 tháng 11 2020

bố mày đéo biết

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

\(\sqrt{\frac{9+12a+4a^2}{b^2}}=\sqrt{\frac{(2a)^2+2.2a.3+3^2}{b^2}}=\sqrt{\frac{(2a+3)^2}{b^2}}\)

\(=|\frac{2a+3}{b}|\)

Vì $a>-1,5; b< 0$ nên \(\frac{2a+3}{b}< 0\Rightarrow \sqrt{\frac{9+12a+4a^2}{b^2}}= |\frac{2a+3}{b}|=\frac{-2a-3}{b}\)

\((a-b)\sqrt{\frac{ab}{(a-b)^2}}=(a-b)\sqrt{ab}.\frac{1}{|a-b|}\)

Do $a< b< 0$ nên $a-b< 0\rightarrow |a-b|=b-a$

\(\Rightarrow (a-b)\sqrt{\frac{ab}{(a-b)^2}}=(a-b).\frac{\sqrt{ab}}{|a-b|}=(a-b).\frac{\sqrt{ab}}{b-a}=-\sqrt{ab}\)

29 tháng 7 2018

a)  \(\frac{\sqrt{4mn^2}}{\sqrt{20m}}=\sqrt{\frac{4mn^2}{20m}}=\sqrt{\frac{n^2}{5}}=\frac{n}{\sqrt{5}}\)

b)  \(\frac{\sqrt{16a^4b^6}}{\sqrt{12a^6b^6}}=\sqrt{\frac{16a^4b^6}{12a^6b^6}}=\sqrt{\frac{4}{3a^2}}=\frac{2}{\sqrt{3}.\left|a\right|}=-\frac{2}{a\sqrt{3}}\)

d)  \(\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)

e) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)

23 tháng 7 2020

\(B=\frac{2}{x^2-y^2}\cdot\sqrt{\frac{9\left(x^2+2xy+y^2\right)}{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\sqrt{\frac{9\left(x+y\right)^2}{4}}\)
\(=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{\sqrt{9\left(x+y\right)^2}}{\sqrt{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{3\left(x+y\right)}{2}\)(vì x > -y <=> x + y >  0)

\(=\frac{3}{x-y}\)

\(C=\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{2a}{3}\cdot\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\)(vì a > = 0)

\(D=\frac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}=\frac{1}{a-b}\cdot a^2\left(a-b\right)=a^2\)(a > b > 0)

23 tháng 7 2020

câu cuối điều kiện là a>b

\(\frac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}=\frac{a^2\left|a-b\right|}{a-b}=\frac{a^2\left(a-b\right)}{a-b}=a^2\) (vì a>b)

13 tháng 5 2021

a) ab2.3a2b4=ab2.3a2b4ab2.3a2b4=ab2.3a2b4

=ab2.3a2.b4=ab2.3|a|.|b2|=ab2.3a2.b4=ab2.3|a|.|b2|

=ab2.3(a).b2=ab2.3(−a).b2 (Do a<0a<0 nên |a|=a|a|=−a và b0b≠0 nên b2>0b2>0   b2=b2|b2|=b2)

=3=−3.

b) 27(a3)248=9(a3)21627(a−3)248=9(a−3)216

=9.(a3)216=3.|a3|4=9.(a−3)216=3.|a−3|4

=3(a3)4=3(a−3)4

(Do a>3a>3 nên |a3|=a3|a−3|=a−3)

c) 9+12a+4a2b2=32+2.3.2a+(2a)2b29+12a+4a2b2=32+2.3.2a+(2a)2b2

=(3+2a)2b2=|3+2a||b|=(3+2a)2b2=|3+2a||b|
=3+2ab=2a+3b=3+2a−b=−2a+3b.

(Do a1,5a≥−1,5  3+2a03+2a≥0 nên |3+2a|=3+2a|3+2a|=3+2a và b<0b<0 nên |b|=b|b|=−b)

d) (ab).ab(ab)2=(ab).ab(ab)2(a−b).ab(a−b)2=(a−b).ab(a−b)2

=(ab).ab|ab|=(ab).ab(ab)=(a−b).ab|a−b|=(a−b).ab−(a−b)

=ab=−ab.

(Do a<b<0a<b<0 nên |ab|=(ab)|a−b|=−(a−b) và ab>0ab>0)

13 tháng 5 2021

a) ab2.3a2b4=ab2.3a2b4ab2.3a2b4=ab2.3a2b4

=ab2.3a2.b4=ab2.3|a|.|b2|=ab2.3a2.b4=ab2.3|a|.|b2|

=ab2.3(a).b2=ab2.3(−a).b2 (Do a<0a<0 nên |a|=a|a|=−a và b0b≠0 nên b2>0b2>0   b2=b2|b2|=b2)

=3=−3.

b) 27(a3)248=9(a3)21627(a−3)248=9(a−3)216

=9.(a3)216=3.|a3|4=9.(a−3)216=3.|a−3|4

=3(a3)4=3(a−3)4

(Do a>3a>3 nên |a3|=a3|a−3|=a−3)

c) 9+12a+4a2b2=32+2.3.2a+(2a)2b29+12a+4a2b2=32+2.3.2a+(2a)2b2

=(3+2a)2b2=|3+2a||b|=(3+2a)2b2=|3+2a||b|
=3+2ab=2a+3b=3+2a−b=−2a+3b.

(Do a1,5a≥−1,5  3+2a03+2a≥0 nên |3+2a|=3+2a|3+2a|=3+2a và b<0b<0 nên |b|=b|b|=−b)

d) (ab).ab(ab)2=(ab).ab(ab)2(a−b).ab(a−b)2=(a−b).ab(a−b)2

=(ab).ab|ab|=(ab).ab(ab)=(a−b).ab|a−b|=(a−b).ab−(a−b)

=ab=−ab.

(Do a<b<0a<b<0 nên |ab|=(ab)|a−b|=−(a−b) và ab>0ab>0)

7 tháng 9 2016

\(2y+\sqrt{\frac{63y^3}{7y}}=2y+\sqrt{9y^2}=2y+3y=5y\)

\(\frac{3\sqrt{3\left(a-2\right)^2}}{27}=\frac{\sqrt{3\left(a-2\right)^2}}{9}=\frac{\sqrt{3}\left(2-a\right)}{\left(\sqrt{3}\right)^4}=\frac{2-a}{3\sqrt{3}}\)

\(x-4+\sqrt{16-8x+x^2}=x-4+x-4=2x-8\)

18 tháng 7 2018

a)  \(A=\left(\sqrt{6}+\sqrt{10}\right).\left(\sqrt{5}-\sqrt{3}\right)\)

         \(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

         \(=2\sqrt{2}\)

  \(B=\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}+1\)  

       \(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+1\)

       \(=\frac{4}{x-4}+1\)

       \(=\frac{4}{x-4}+\frac{x-4}{x-4}=\frac{x}{x-4}\)