cho a = 2x4x6x8x10x12-40 . Hỏi a có chia hết cho 6, cho 8, cho 20 không. Vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2.4.6.8.10.12 - 40
A = 40.2.6.8.12 - 40
A =40.( 2.6.8.12 - 1) ⋮ 20; 8
A = 2.4.6.8.10.12 - 40
2.4.6.8.10.12 ⋮ 6
40 không chia hết cho 6
Vậy A không chia hết cho 6
+) Ta có:\(2.4.6.8.10.12⋮6;40⋮̸6\)
Vậy:\(A⋮̸6\)
+) Ta có:\(2.4.6.8.10.12⋮8;40⋮8\)
Vậy:\(A⋮6\)
+) Ta có:\(2.4.6.8.10.12⋮20;40⋮̸6\)
Vậy:\(A⋮̸6\)
A = 2.4.6.8.10.12 - 40
Ta tách A thành 2 vế để xem xét, vế 1 là 2.4.6.8.10.12, vế 2 là 40
Trước hết xem xét vế thứ nhất của A là 2.4.6.8.10.12, tích của phép nhân này sẽ chia hết cho cả 5; 6; 8
(Chia hết cho 5 vì trong phép nhân có số hạng là 10, mà 10 chia hết cho 5, nên tích chia hết cho 5. Chia hết cho 6 và 8 vì có các số hạng là 6 và 8 trong phép nhân)
Vậy nên để xem A chia hết cho 5; 6; 8 ta chỉ cần xét đến vế thứ 2 là số 40.
40 chia hết cho 5 nên A chia hết cho 5.
40 không chia hết cho 6 nên A không chia hết cho 6.
HT
40 chia hết cho 8 nên A chia hết cho 8.
Đáp số: A chia hết cho 5 và 8, A không chia hết cho 6.
Ta có :
6 ⋮ 6
=> 2.4.6.8.10.12 ⋮ 6
Mà : 40 không chia hết cho 6
=> A không chia hết cho 6.
8 ⋮ 8
=> 2.4.6.8.10.12 ⋮ 8
Mà : 40 ⋮ 8
=> A ⋮ 8
10 ⋮ 10
=> 2.4.6.8.10.12 ⋮ 10
Mà : 40 ⋮ 10
=> A ⋮ 10.
Sơ đồ con đường |
Lời giải chi tiết |
|
Ta có 8 ⋮ 8 ⇒ 2.4.6.8.10 ⋮ 8 Áp dụng tính chất chia hết của một tổng ta có: 2.4.6.8.10 ⋮ 8 40 ⋮ 8 ⇒ A = 2.4.6.8.10 + 40 ⋮ 8 Vậy A = 2.4.6.8.10 + 40 chia hết cho 8. |