K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 3 2021

\(\Leftrightarrow\sqrt{\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}-\sqrt{\left(x-\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}=m\)

Trong mp tọa độ, gọi \(A\left(-\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) ; \(B\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) và \(M\left(x;0\right)\) \(\Rightarrow AB=1\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(x+\dfrac{1}{2};-\dfrac{\sqrt{3}}{2}\right)\\\overrightarrow{BM}=\left(x-\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AM=\sqrt{\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}\\BM=\sqrt{\left(x-\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}\end{matrix}\right.\)

Theo BĐT tam giác: \(\left|AM-BM\right|< AB=1\)

\(\Rightarrow\left|m\right|< 1\Rightarrow-1< m< 1\)

8 tháng 8 2021

Vì $\sqrt{1+x}\ge 0,\sqrt{8-x}\ge 0,\sqrt{(1+x)(8-x)}\ge 0$

$\to \sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}\ge 0$

mà $\sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}=m$

=> m≥0

8 tháng 8 2021

Đặt : 

\(t=\sqrt{1+x}+\sqrt{8-x}\) \(\left(t\ge0\right)\)

DKXĐ : \(-1\le x\le8\)

\(\Leftrightarrow t^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\) (1) 

BBT của \(t^2\) :

 \(x\) \(-1\)                                  \(0\)                                  \(8\)
\(t^2\)

                                        \(9+2\sqrt{2}\)

\(9\)                                                                           \(9\)

\(t\)

                                        \(1+2\sqrt{2}\)

                                                                            \(1\)

          \(2\sqrt{2}\)                                                                    

 

\(\Leftrightarrow t\in\left(1,2\sqrt{2}\right)\)


Thay \(\left(1\right)\) vào pt ta có :\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{t^2-9}{2}\) (1)

\(\Leftrightarrow f\left(t\right)=t^2+2t-9=2m\)

BBT của \(f\left(t\right)\) :

 \(t\) \(1\)                                                             \(2\sqrt{2}\)
\(f\left(t\right)\)

                                                                                                                                         \(4\sqrt{2}-1\)

\(-6\)

 

\(\Leftrightarrow2m\in\left[-6;4\sqrt{2}-1\right]\)   thì pt có nghiệm 

\(\Leftrightarrow m\in\left(-3;\dfrac{-1+4\sqrt{2}}{2}\right)\)

Vẽ dùm mình mấy cái mũi tên trên BBT nhé UwU

 

 

8 tháng 8 2021

Để pt có nghiệm thì

\(1+x\ne0\) và \(8-x\ne0\)

\(\Rightarrow x\ne-1\) và \(x\ne8\)

8 tháng 8 2021

\(\sqrt{1+x} +\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=m\)

( mk viết thiếu đề)

 

26 tháng 1 2022

a, đk : x > = 0 

Ta có : \(P=\dfrac{x-\sqrt{x}+1}{x+1}=\dfrac{m\sqrt{x}}{x+1}\Rightarrow x-\sqrt{x}+1=m\sqrt{x}\)

\(\Leftrightarrow x-\left(m+1\right)\sqrt{x}+1=0\)

Đặt \(\sqrt{x}=t\)khi đo x = t^2 

\(t^2-\left(m+1\right)t+1=0\)

Để pt có 2 nghiệm pb khi 

\(\Delta=\left(m+1\right)^2-4=m^2+2m-3>0\)

26 tháng 1 2022

bổ sung dòng cuối nhé 

\(=m^2+2m-3=m^2+2m+1-4=\left(m+1\right)^2-4\)

\(=\left(m-1\right)\left(m+3\right)>0\)

TH1 : \(\left\{{}\begin{matrix}m-1>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\m>-3\end{matrix}\right.\Leftrightarrow m>1\)

TH2 : \(\left\{{}\begin{matrix}m-1< 0\\m+3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m< -3\end{matrix}\right.\Leftrightarrow m< -3\)