biết hàm số y=\(-x^3+3mx^2+3\left(1-m^2\right)x+m^3-m^2\)có 2 cực trị và điểm A (2;-2) thuộc đường thẳng đi qua 2 điểm cực trị của đồ thị hàm số . Gía trị của tham số m thuộc tập hợp nào
A.(\(-\infty;-3\) B.\(\left(4;9\right)\) C.\(\left(-5:+\infty\right)\) D.(-7;-4)
\(y'=-3x^2+6mx+3\left(1-m^2\right)\)
Thực hiện phép chia \(y\) cho \(y'\) và lấy phần dư ta được phương trình đường thẳng đi qua 2 cực trị là: \(y=2x-m^2+m\)
Do \(A\in d\Rightarrow-2=2.2-m^2+m\Leftrightarrow-m^2+m+6=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-2\end{matrix}\right.\)
Đáp án đúng là đáp án C