y x 2012 - y = 2012 x 2010 + 2012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô - si ngược dấu :
\(\sqrt{x-2010}=\frac{1}{2}\sqrt{4\left(x-2010\right)}\le\frac{4+\left(x-2010\right)}{4}\)
\(\Rightarrow\sqrt{x-2010}-1\le\frac{4+\left(x-2010\right)}{4}-1=\frac{x-2010}{4}\)
\(\Rightarrow\frac{\sqrt{x-2010}-1}{x-2010}\le\frac{1}{4}\)
Hoàn toàn tương tự với những phân thức còn lại
\(\Rightarrow\frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2010=4\\x-2011=4\\z-2012=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=2014\\y=2015\\z=2016\end{cases}}}\)
Lời giải:
Áp dụng BĐT Cô-si ngược dấu:
\(\sqrt{x-2010}=\frac{1}{2}\sqrt{4(x-2010)}\leq \frac{4+(x-2010)}{4}\)
\(\Rightarrow \sqrt{x-2010}-1\leq \frac{4+(x-2010)}{4}-1=\frac{x-2010}{4}\)
\(\Rightarrow \frac{\sqrt{x-2010}-1}{x-2010}\leq \frac{1}{4}\)
Hoàn toàn tương tự với những phân thức còn lại:
\(\Rightarrow \frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}+\frac{\sqrt{z-2012}-1}{z-2012}\leq \frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x-2010=4\\ y-2011=4\\ z-2012=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2014\\ y=2015\\ z=2016\end{matrix}\right.\)
+ \(\left(x^{2011}+y^{2011}\right)\left(x+y\right)\)
\(=x^{2012}+y^{2012}+xy\left(x^{2010}+y^{2010}\right)\)
\(=\left(x^{2011}+y^{2011}\right)+xy\left(x^{2011}+y^{2011}\right)\)
\(=\left(xy+1\right)\left(x^{2011}+y^{2011}\right)\)
+ Vì x, y dương nên \(x^{2011}+y^{2011}>0\)
=> x + y = xy + 1
=> x + y - xy - 1 = 0
=> ( y - 1 ) - x( y - 1 ) = 0
=> ( 1 - x ) ( y - 1 ) = 0
\(\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
+ x = 1 => \(1+y^{2010}=1+y^{2011}=1+y^{2012}\)
\(\Rightarrow y^{2010}=y^{2011}\) \(\Rightarrow y^{2010}-y^{2011}=0\)
\(\Rightarrow y^{2010}\left(1-y\right)=0\)
\(\Rightarrow y=1\left(doy>0\right)\)
+ Tương tự nếu y = 1 ta cùng tìm được x = 1
Do đó : A = 2
Lời giải khác:
Ta có:
\(x^{2011}+y^{2011}=x^{2010}+y^{2010}\)
\(\Rightarrow x^{2011}-x^{2010}+y^{2011}-y^{2010}=0\)
\(\Leftrightarrow x^{2010}(x-1)+y^{2010}(y-1)=0(1)\)
Và: \(x^{2011}+y^{2011}=x^{2012}+y^{2012}\)
\(\Rightarrow x^{2012}-x^{2011}+y^{2012}-y^{2011}=0\)
\(\Leftrightarrow x^{2011}(x-1)+y^{2011}(y-1)=0(2)\)
Lấy (2)-(1) ta có:
\(x^{2011}(x-1)-x^{2010}(x-1)+y^{2011}(y-1)-y^{2010}(y-1)=0\)
\(\Leftrightarrow x^{2010}(x-1)^2+y^{2010}(y-1)^2=0\)
Dễ thấy \(x^{2010}(x-1)^2\geq 0; y^{2010}(y-1)^2\geq 0, \forall x,y>0\)
Do đó để tổng của chúng bằng $0$ thì \(x^{2010}(x-1)^2=y^{2010}(y-1)^2=0\)
Mà $x,y$ đều dương nên $x=y=1$
Khi đó ta dễ tính ra $A=2$
\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\)
\(\Leftrightarrow\left(x^{2012}+x^{2010}-2x^{2011}\right)+\left(y^{2012}+y^{2010}-2y^{2011}\right)=9\)\(\rightarrow x^{2010}\left(x^2-2x+1\right)+y^{2010}\left(y^2-y+1\right)=0\)
\(\Leftrightarrow x^{2010}\left(x-1\right)^2+y^{2010}\left(y-1\right)^2=0\)
Do x;y dương => x=y=1
Bài giải
BẠN LẬT SBT TOÁN 7 (TẬP1) TRANG 53 BÀI 8.6 NGƯỜI TA ĐÃ CHỨNG MINH ĐƯỢC x:y:z=a:b:c
=> x =a*m;y=b*m;z=c*m
=>p=(a*m)^2010+(b*m)^2010+(c*m)^2010=m^2010(a^2010+b^2010+c^2010)=m^2010*2013
BÀI NÀY HỘI NGỘ
THANK YOU SO MUCH
X * 2012 - X=2012*2010+2012
=>x*(2012-1)=2012*(2010+1)
=>x*2011=2012*2011
=>x=2012 (2 vế chia 2011)
y x 2012 - y = 2012 x 2010 + 2012
2011 x y = 4046132
y = 4046132 : 2011
y = 2012
vậy y = 2012
cbht
Ta có:
y x 2012 - y = 2012 x 2010 + 2012
y*2012 - y*1=2012*2010+2012*1
y*(2012- 1)=2012*(2010+1)
y*2011=2012*2011
y=2012(bớt mỗi vế 1 thừa số 2011)
Vậy y=2012