Cho mình hỏi hệ thức Vi-ét có áp dụng cho hệ phương trình được không ạ
Có dạng bài như vậy nên không biết làm sao:
Cho hệ phương trình sau:
\(\hept{\begin{cases}3x+3y=3+a\\x+2y=a\end{cases}}\)
*Tìm a để x2 + y2 = 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
a) \(\hept{\begin{cases}x+3y=4\left(1\right)\\2x+5y=7\left(2\right)\end{cases}}\)
Nhân cả hai vế ở phương trình (1) với 2 ta được \(2x+6y=8\)(3)
Lấy (3) - (2) ta được \(y=1\)
Từ đó suy ra x = 4 - 3 . 1 = 4 - 3 = 1
Vậy x = y = 1
\(\hept{\begin{cases}3x+3y=3+a\\x+2y=a\end{cases}\left(1\right)}\)
\(\Rightarrow\hept{\begin{cases}3x+3y=3+a\\3x+6y=3a\end{cases}}\)
\(\Rightarrow3y=2a-3\)
\(\Rightarrow y=\frac{2a-3}{3}\)
Cũng có :
Từ ( 1 ) \(\Rightarrow\)\(\hept{\begin{cases}6x+6y=6+2a\\3x+6y=3a\end{cases}}\)
\(\Rightarrow3x=6-a\)
\(\Rightarrow x=\frac{6-a}{3}\)
\(\Rightarrow\left(\frac{2a-3}{3}\right)^2+\left(\frac{6-a}{3}\right)^2=17\)
\(\Rightarrow\frac{4a^2-12a+9}{9}+\frac{36-12a+a^2}{9}=17\)
\(\Rightarrow5a^2+45=153\)
\(\Rightarrow5a^2=108\)
\(\Rightarrow a^2=\frac{108}{5}\)
\(\Rightarrow\orbr{\begin{cases}a=-\sqrt{\frac{108}{5}}\\a=\sqrt{\frac{108}{5}}\end{cases}}\)