Giải hệ phương trình giúp mk mk nha
Hpt: 12/x+y+12/x-y và 4/x+y+8/x-y
giúp mk nha thanks you các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải hệ phương trình giúp mk mk nha
Hpt: 12/x+y+12/x-y và 4/x+y+8/x-y
giúp mk nha thanks you các bạn
bổ sung đề là tìm x,y nguyên dương
b/\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\).Vai trò của x,y là bình đẳng nên có thể giả sử: \(x\ge y\)
Hiển nhiên ta có: \(\frac{1}{y}< \frac{1}{3}\Leftrightarrow y\ge4\) (vì x,y nguyên dương)
và\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}=\frac{2}{6}\le\frac{2}{y}\Rightarrow y\le6\)
Ta có: \(4\le y\le6\)
Đến đây bí,alibaba!
Ta có : \(\hept{\begin{cases}2\left(x+y\right)=5\left(x-y\right)\\\frac{20}{x+y}+\frac{20}{x-y}=7\end{cases}}\left(ĐKXĐ:x\ne\pm y\right)\)
\(\Leftrightarrow\hept{\begin{cases}x+y=\frac{5\left(x-y\right)}{2}\\\frac{20.2}{5\left(x-y\right)}+\frac{20}{x-y}=7\left(1\right)\end{cases}}\)
Giải (1) : \(\left(1\right)\Leftrightarrow\frac{8}{x-y}+\frac{20}{x-y}=7\)
\(\Leftrightarrow\frac{28}{x-y}=7\)
\(\Leftrightarrow x-y=4\)
\(\Rightarrow x+y=\frac{5.4}{2}=10\)
Ta có hệ \(\hept{\begin{cases}x+y=10\\x-y=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=14\\x-y=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=3\end{cases}\left(TmĐKXĐ\right)}\)
\(\left(2x+1\right)\cdot\left(y-5\right)=12\)
<=>\(x=\frac{17-y}{2y-10}\)
thay x vào phương trình
=>\(\left(\frac{17-y+y-5}{y-5}\right)\cdot\left(y-5\right)=12\)
<=>\(\frac{12}{y-5}\cdot\left(y-5\right)=12\)
<=>\(12=12\)(Luôn đúng khi và chỉ khi y khác 5 )\(y\ne5,y\inℝ\)
giả sử thay y=1 ta có
=>\(2x=\frac{12}{1-5}-1\)
<=>\(2x=-4\)
=>\(x=-2\)
Vậy \(x=-2\)và \(y=1\)
(2x+1)(y-5)=12
Vì x,y \(\in N\)
=> 2x+1;y-5 \(\in N\)
=> 2x+1, y-5 \(\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Vì 2x+1 là số lẻ => \(2x+1\in\left\{\pm1;\pm3\right\}\)
Xét bảng
2x+1 | 1 | -1 | 3 | -3 |
y-5 | 12 | -12 | 4 | -4 |
x | 0 | -1(ko tm) | 1 | -2( ko tm) |
y | 17 | 4 | 9 | 1 |
Vậy các cắp (x,y) tm là (0;17), (1;9)
Đa thức = (x^2+y^2+2xy)-2.(x+y).1/2+1/4 - 49/4
= (x+y)^2-2.(x+y).1/2+1/4 - 49/4
= (x+y-1/2)^2 - 49/4
= (x+y-1/2-7/2).(x+y-1/2+7/2)
= (x+y-4).(x+y+3)
k mk nha
\(\hept{\begin{cases}2x+2y=10-2xy\\x^2+y^2=5\end{cases}}\)
\(\Rightarrow x^2+y^2-10+2xy=5-2\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x+y\right)-10=5-2\left(x+y\right)\)
\(\text{Đặt: x+y=a}\)
\(a^2-10=5-2a\Rightarrow a^2-10-5+2a=0\Rightarrow a^2+2a-15=0\)
\(\)\(\Leftrightarrow a^2+2a+1=16\Leftrightarrow a+1=\pm4\Leftrightarrow\orbr{\begin{cases}a=-5\\a=3\end{cases}}\)
\(+,a=-5\Rightarrow x+y=-5\)
\(\Rightarrow xy=10\Rightarrow x^2+y^2+10-2xy=0\Rightarrow\left(x-y\right)^2=-10\left(\text{loại}\right)\)
\(+,a=3\Rightarrow x+y=3\Rightarrow xy=2\)
\(\Rightarrow x^2+y^2+10-2xy=11\Rightarrow\left(x-y\right)\left(x-y\right)=1\Rightarrow x-y=\pm1\)
\(\text{Giả sử: x ít nhất bằng y}\)
\(\Rightarrow x-y=1\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
\(y\ge x\Rightarrow\hept{\begin{cases}y=2\\x=1\end{cases}}\)
đến đây thì ez rồi
để tui lm cho
áp dụng đẳng thức \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
<=> \(1-3xyz=1\left(1-xy-yz-zx\right)\)
<=> \(3xyz=xy+yz+zx\)
mặt khác ta có 1=(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2zx
<=> 1=1+2(xy+yz+zx)
<=> xy+yz+zx=0
<=> 3xyz=0
<=> \(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
đến đấy cậu tự lm nốt nhé
mà pn tuấn anh j ơi ,, bài này mk tìm đc 3 cặp nghiệm luôn á (x;y;z)=(0;0;1);(0;1;0);(1;0;0)
pn giải cụ thể ra giúp mk vs
\(\frac{4}{7}=\frac{12}{21}\)
\(\Rightarrow\) \(x+4=12\Rightarrow x=8\)
\(\Rightarrow y+7=21\Rightarrow y=14\)
x + y = 8 + 14 = 22
****
suy ra (x + 4)7 = (y+7)4 mà x + y =22
7x+28 = 4y +28 suy ra x=22 -y (2)
7x = 4y (1)
từ (1) và (2) suy ra :7(22 - y)=4y
154 - 7y =4y
154 = 11y
suy ra y = 154 /11=14
x = 22-14=8
Dễ mà! Bạn đặt ẩn phụ đi! 1/x+y=a; 1/x-y=b rùi giải ra thui!
Lạ nhỉ! Mấy cái phg trình ko bằng gì à? Thế này đâu phải là hpt