Cho (P): \(y=x^2\)
- Trên (P) lấy điểm M có hoành độ là \(\frac{1}{2}\). Viết phương trình đường thẳng (d) đi qua M tiếp xúc với (P) tại M
- Cho A(2;3). Viết phương trình đường thẳng \(\left(d_1\right)\) đi qua A và tiếp xúc với (P)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Em tự giải
b. Từ giả thiết ta có \(A\left(-2;1\right)\) và \(B\left(4;4\right)\)
Gọi phương trình (d) có dạng \(y=ax+b\), do (d) qua A và B nên:
\(\left\{{}\begin{matrix}-2a+b=1\\4a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=2\end{matrix}\right.\) \(\Rightarrow y=\dfrac{1}{2}x+2\)
c. Câu này có vài cách giải cho lớp 9, cách nhanh nhất là sử dụng tính chất tiếp tuyến.
Từ M kẻ \(MH\perp AB\Rightarrow S_{ABM}=\dfrac{1}{2}MH.AB\)
Do AB cố định \(\Rightarrow S_{max}\) khi \(MH_{max}\)
Gọi \(d_1\) là đường thẳng song song d và tiếp xúc (P), gọi C là tiếp điểm \(d_1\) và (P)
Do \(d_1\) song song (d) nên pt có dạng: \(y=\dfrac{1}{2}x+b\)
Phương trình hoành độ giao điểm \(d_1\) và (P):
\(\dfrac{1}{4}x^2=\dfrac{1}{2}x+b\Rightarrow x^2-2x-4b=0\) (1)
Do \(d_1\) tiếp xúc (P) \(\Rightarrow\left(1\right)\) có nghiệm kép
\(\Rightarrow\Delta'=1+4b=0\Rightarrow b=-\dfrac{1}{4}\)
Thế vào (1) \(\Rightarrow x_C^2-2x_C+1=0\Rightarrow x_C=1\Rightarrow y_C=\dfrac{1}{4}\) \(\Rightarrow C\left(1;\dfrac{1}{4}\right)\)
Từ C kẻ \(CK\perp d\)
Giả sử HM kéo dài cắt \(d_1\) tại D \(\Rightarrow\) tứ giác CKHD là hình chữ nhật (2 cặp cạnh đối song song và 1 góc vuông)
\(\Rightarrow CK=DH\)
Mà \(DH=MH+MD\ge MH\Rightarrow CK\ge MH\)
\(\Rightarrow MH_{max}=CK\) khi M trùng C
Hay \(M\left(1;\dfrac{1}{4}\right)\)
Lời giải:
1. Vì $M$ nằm trên $(P)$ nên \(y_M=x_M^2=(\frac{1}{2})^2=\frac{1}{4}\)
Gọi PTĐT (d) là $y=ax+b$
PT hoành độ giao điểm giữa (d) với (P): \(x^2-ax-b=0\)
Để (d) tiếp xúc với (P) nên PT hoành độ giao điểm chỉ có 1 nghiệm duy nhất $x_M$
\(\Rightarrow \left\{\begin{matrix} \Delta=a^2+4b=0\\ x_M^2-ax_M-b=\frac{1}{4}-\frac{1}{2}a-b=0\end{matrix}\right.\)
\(\Rightarrow a=1; b=-\frac{1}{4}\)
Vậy PTĐT là \(y=x-\frac{1}{4}\)
2. Gọi PTĐT (d1) là $y=mx+n$
Vì $A(2;3)$ thuộc (d1) nên \(3=2m+n(1)\)
(P) và (d1) tiếp xúc với nhau nên PT hoành độ giao điểm \(x^2-mx-n=0\) chỉ có 1 nghiệm duy nhất
\(\Leftrightarrow \Delta=m^2+4n=0(2)\)
Từ \((1);(2)\Rightarrow \left[\begin{matrix} m=6\rightarrow n=-9\\ m=2\rightarrow n=-1\end{matrix}\right.\)
Vậy PTĐT (d1) là \(y=6x-9\) hoặc \(y=2x-1\)