Cho các số x,y,z khác 0 thỏa mãn đồng thời \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=2 và \(\frac{2}{xy}\)-\(\frac{1}{z^2}\)=4.
Tính giá trị biểu thức: P=\(\left(x+2y+z\right)^{2019}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chắc câu này a đăng lên cho vui :vv
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2< =>\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=2^2=4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\left(\frac{2}{xy}-\frac{1}{z^2}\right)+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}+4=4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xy}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4-4\)
\(< =>\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{zx}=0\)
\(< =>\left(\frac{1}{x^2}+\frac{2}{zx}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)
\(< =>\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0< =>\frac{1}{x}=\frac{1}{y}=-\frac{1}{z}\)
\(< =>x=y=-z\)Thế vào giả thiết ta được : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(< =>\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2< =>\frac{-1}{z}+\frac{-1}{z}+\frac{1}{z}=2\)
\(< =>\frac{-1-1+1}{z}=2< =>2z=-1< =>z=-\frac{1}{2}\)
Suy ra \(x=y=-z=-\left(-\frac{1}{2}\right)=\frac{1}{2}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
Nên \(P=\left(x+2y+z\right)^{2019}=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2019}=1^{2019}=1\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}=\frac{2}{xy}-\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}-\frac{2}{xy}+\frac{1}{z^2}=0\)
\(\Leftrightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{z}=0\\\frac{1}{y}+\frac{1}{z}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{1}{x}=\frac{1}{-z}\\\frac{1}{y}=\frac{1}{-z}\end{cases}\Leftrightarrow}\frac{1}{x}=\frac{1}{y}=\frac{1}{-z}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Leftrightarrow\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2\)
\(\Leftrightarrow z=\frac{-1}{2}\)
\(x=y=\frac{1}{2}\)
\(\Rightarrow C=\left(x+2y+z\right)^{2021}=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2021}=1^{2021}=1\)
Ta có:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}-\frac{2}{xy}+\frac{1}{z^2}=0\)
\(\Leftrightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\\\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=-\frac{1}{z}\\\frac{1}{y}=-\frac{1}{z}\end{cases}}}\)
\(\Leftrightarrow x=y=-z\)
Thay vào \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)ta được :
\(x=y=\frac{1}{2};z=-\frac{1}{2}\)
\(\Rightarrow P=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2021}=1^{2020}=1\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)
y+z-x/x=z+x-y/y=x+y-z/z
=y+z-x+z+x-y+x+y-z/x+y+z
=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z
=0+0+0+x+y+z/x+y+z=1
\(\Leftrightarrow\)x=y=z (*)
thay (*) vào B ta có:
B=(1+x/x)(1+x/x)(1+x/x)
=2.2.2=8
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )
\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)
Thế x = y = z vào B ta được :
\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)
Khai triển cả 2 vế ta được \(\left(\frac{1}{y}+\frac{1}{z}\right)^2+\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)
=>\(\hept{\begin{cases}\frac{1}{y}+\frac{1}{z}=0\\\frac{1}{x}+\frac{1}{z}=0\end{cases}}\)=>\(\frac{1}{x}=\frac{1}{y}\Rightarrow x=y\)
=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{z}=2\Rightarrow\frac{4}{x^2}+\frac{4}{xz}+\frac{1}{z^2}=4\)(1)
\(\frac{2}{xy}-\frac{1}{z^2}=\frac{2}{x^2}-\frac{1}{z^2}=4\)(2)
Từ (1) và (2) suy ra
\(\frac{2}{x^2}+\frac{4}{xz}+\frac{2}{z^2}=0\Rightarrow\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}=0\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)\(\Rightarrow\frac{1}{x}+\frac{1}{z}=0\Rightarrow x=y=-z\)
=> \(P=\left(x+2y+z\right)^{2019}=\left(2y\right)^{2019}\)
à thêm cái này nữa. Sorry viết thiếu
Vì x=y=-z\(\Rightarrow\frac{2}{x}-\frac{1}{x}=2\Rightarrow\frac{1}{x}=2\Rightarrow x=\frac{1}{2}.\)
lúc đó \(P=\left(2.\frac{1}{2}\right)^{2019}=1\)