Cho đa giác đều có 26 đỉnh. Trên 26 đỉnh có ghi số tự nhiên từ 1 đến 12. C/m có 4 đỉnh tạo thành 1 hcn ABCD với a+b=c+d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy 3 còn lại 9 => nó là tg đều khi 2 đỉnh của tg phải cách nhau qua 3 đỉnh khác
Chia đỉnh đa giác thành 3 nhóm, mỗi nhóm có 4 đỉnh kề nhau, khi lấy 1 đỉnh ở nhóm này làm 1 đỉnh tg thì 2 đỉnh kia sẽ nằm tg ứng trong 2 nhóm còn lại, và số cách lấy 1 đỉnh trong 1 nhóm để làm đỉnh đa giác là 4 => có 4 tg đều có thể lập đc
=> Xác suất = ......
Nếu đã hiểu bài này, b có thể đưa ra 1 công thức: đó là nếu đa giác đều có 3n đỉnh (n thuộc N) thì số tam giác đều như trên là n
Chú ý chỉ là quan tâm đến chữ "đều" mà thôi, từ đó suy ra đc những tính chất mà đề yêu cầu, VD trong bài này, tính chất là mỗi đỉnh của tg đều pải cách nhau qua 3 đỉnh khác của đa giác, từ đó mới suy ra cách chọn ntn.
Còn công thức b co thể xem trên GL về tổ hợp xác suất trong hình học.
SỐ tam giác tạo được từ 3 đỉnh là \(C^3_{12}\)
Số tam giác có 3 đỉnh là 3 đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn
=>Có 12 tam giác
Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác
=>CÓ 8*12=96 tam giác
=>\(P=\dfrac{C^3_{12}-12-12\cdot8}{C^3_{12}}\)
Phương pháp:
Xác suất của biến cố A được tính bởi công thức: P A = n A n Ω
Cách giải:
Số cách chọn 3 đỉnh bất kì của đa giác là: n Ω = C 48 3
Gọi O là tâm đường tròn ngoại tiếp đa giác đều.
Gọi biến cố A: “Chọn 3 đỉnh bất kì của đa giác để được một tam giác nhọn”.
Lấy điểm A thuộc đường tròn (O), kẻ đường kính AA’ => A’ cũng thuộc đường tròn (O).
Khi đó AA’ chia đường tròn (O) thành hai nửa, mỗi nửa có 23 đỉnh.
Chọn 2 đỉnh B, C cùng thuộc 1 nửa đường tròn có C 23 2 c á c h c h ọ n ⇒ có C 23 2 tam giác ABC là tam giác tù.
Tương tự như vậy đối với nửa còn lại nên ta có 2 C 23 2 tam giác tù được tạo thành.
Đa giác đều có 48 đỉnh nên có 24 đường chéo => có 24.2. C 23 2 tam giác tù.
Ứng với mỗi đường kính ta có 23.2 tam giác vuông. Vậy số tam giác vuông là: 23.2.24 = 1104 tam giác.
Đáp án C
+) Số tam giác được tạo từ 3 đỉnh trong 12 đỉnh: C 12 3
+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn đề bài, nên có 12 tam giác
+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác: cứ 1 cạnh, trừ đi 2 đỉnh kể, còn 8 đỉnh, với 2 đỉnh đầu mút của cạnh đó cho 1 tam giác thỏa mãn đề bài, nên có 8.12 tam giác
Vậy số tam giác có 3 đỉnh là đỉnh của đa giác và không có cạnh nào là cạnh của đa giác là C 12 3 − 12 − 8.12
Vậy kết quả là C 12 3 − 12 − 8.12 C 12 3
Đáp án C
+) Số tam giác được tạo từ 3 đỉnh trong 12 đỉnh: C 12 3
+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn đề bài, nên có 12 tam giác
+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác: cứ 1 cạnh, trừ đi 2 đỉnh kể, còn 8 đỉnh, với 2 đỉnh đầu mút của cạnh đó cho 1 tam giác thỏa mãn đề bài, nên có 8.12 tam giác
Vậy số tam giác có 3 đỉnh là đỉnh của đa giác và không có cạnh nào là cạnh của đa giác là C 12 3 - 12 - 12 . 8
Vậy kết quả là C 12 3 - 12 - 12 . 8 C 12 3
Chọn D
Số cách chọn 1 tam giác có 3 đỉnh trùng với 3 trong số 18 đỉnh của đa giác đã cho là
Gọi A là biến cố: “ tam giác được chọn là tam giác cân”.
- TH1: Tam giác được chọn là tam giác đều: có 6 cách.
- TH2: Tam giác được chọn là tam giác cân nhưng không phải tam giác đều:
+ Chọn đỉnh của tam giác cân có 18 cách.
+ Chọn cặp đỉnh còn lại để cùng với đỉnh đã chọn tạo thành đỉnh của tam giác cân (không đều) có 7 cách.
Suy ra số cách chọn tam giác cân nhưng không phải tam giác đều là 18.7 = 126 cách.
Vậy
Không gian mẫu \(\Omega\) là tập hợp tất cả các cách chọn ngẫu nhiên 4 đỉnh trong 12 đỉnh
Ta có \(n\left(\Omega\right)=C_{12}^4=495\)
Gọi A là biến cố : 4 đỉnh được chọn tạo thành một hình chữ nhật"
Gọi đường chéo của đa giác đều \(A_1A_2A_3...A_{12}\) đi qua tâm đường tròn (O) là đường chéo lớn thì đa giác đã cho có 6 đường chéo lớn.
Mỗi hình chữ nhật có các đỉnh là 4 đỉnh trong 12 điểm \(A_1,A_2,A_3,...A_{12}\) có các đường chéo là 2 đường chéo lớn. Ngược lại, mỗi cặp đường chéo lớn có các đầu mút là 4 đỉnh của một hình chữ nhâtk.
Do đó, số hình chữ nhật được tạo thành là : \(n\left(A\right)=C_6^2=15\)
Vậy xác suất cần tính là \(P\left(A\right)=\frac{n\left(A\right)}{n\left(\Omega\right)}=\frac{15}{495}=\frac{1}{33}\)
ko bk😞 😞 😞
bó tay