K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2019

\(7-\sqrt{x}=0\)

\(\sqrt{x}=7\)

\(x=49\)

23 tháng 5 2019

\(7-\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}=7-0=7\)

\(\Rightarrow\sqrt{x}=7\Rightarrow x=49\)

DT
16 tháng 6 2023

\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)

\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)

\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)

\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)

\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)

18 tháng 6 2023

a)

\(\sqrt{x}=4\Rightarrow x=4^2=16\)

c) \(x\in\varnothing\)

e)  \(\sqrt{x}=6,25\Rightarrow x=\left(6,25\right)^2=39,0625\)

b) \(\sqrt{x}=\sqrt{7}\Rightarrow x=7\)

d) \(\sqrt{x}=0\Rightarrow x=0\)

Cách đánh đề độc lạ ghê:v

a: =>x=16

b: =>x=7

c: =>x thuộc rỗng

d: =>x=0

e: =>x=(25/4)^2=625/16

19 tháng 11 2017

\(7-\sqrt{x}=0\)

\(\sqrt{x}=7\)

\(\Rightarrow x=7^2\)

\(\Rightarrow x=49\)

vậy \(x=49\)

P/S: fan khởi my

19 tháng 11 2017

\(7-\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}=7-0=7\)

\(\Leftrightarrow x=7\cdot7\)

\(\Leftrightarrow x=49\)

29 tháng 10 2020

Từ GT <->   \(x+y+z=2\sqrt{x}+4\sqrt{y}+6\sqrt{z}-14\)

          <>     \(\left(x-2\sqrt{x}+1\right)\)\(\left(y-4\sqrt{y}+4\right)+\left(z-6\sqrt{z}+9\right)\)\(=0\)

        <>        \(\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-2\right)^2+\left(\sqrt{z}-3\right)^2=0\)

vì \(\left(\sqrt{x}-1\right)^2\ge0\forall x>0\).......................................................................

đến đây tự làm tiếp nhé

27 tháng 10 2018

\(a,\sqrt{x}=7\)

\(\Rightarrow\sqrt{x}=\sqrt{49}\)

\(\Rightarrow x=49\)

\(b,\sqrt{x^3}=0\)

\(\Rightarrow x^3=0\)

\(\Rightarrow x=0\)

27 tháng 10 2018

a) \(\sqrt{x}=7\Rightarrow x=49\)

b) \(\sqrt{x^3}=0\Rightarrow x=0\)

a, \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)

\(\Rightarrow\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9\left(x-1\right)}+24\frac{\sqrt{x-1}}{\sqrt{64}}=-17\)

\(\Rightarrow\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+\frac{24\sqrt{x-1}}{8}=-17\)

\(\Rightarrow\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Rightarrow\sqrt{x-1}\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)

\(\Rightarrow\sqrt{x-1}.-1=-17\)

\(\Rightarrow\sqrt{x-1}=17\)

\(\Rightarrow x-1=289\)

\(\Rightarrow x=290\)

b, \(3x-7\sqrt{x}+4=0\)

\(\Rightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)

\(\Rightarrow3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)

\(\Rightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\3\sqrt{x}-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}\sqrt{x}=1\\3\sqrt{x}=4\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{16}{9}\end{cases}}}\)

c, \(-5x+7\sqrt{x}+12=0\)

\(\Rightarrow-5x-5\sqrt{x}+12\sqrt{x}+12=0\)

\(\Rightarrow-5\sqrt{x}\left(\sqrt{x}+1\right)+12\left(x+1\right)=0\)

\(\Rightarrow\left(\sqrt{x}+1\right)\left(-5\sqrt{x}+12\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\-5\sqrt{x}+12=0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}=-1VN\\-5\sqrt{x}=-12\end{cases}}\Rightarrow\orbr{\begin{cases}\\\sqrt{x}=\frac{12}{5}\end{cases}\Rightarrow}\orbr{\begin{cases}\\x=\frac{144}{25}\end{cases}}}\)

9 tháng 7 2019

1) ĐK: \(x-1\ge0\Leftrightarrow x\ge1\)

pt \(\Leftrightarrow\frac{1}{2}\sqrt{x-1}-\frac{3}{2}.3\sqrt{x-1}+\frac{24}{8}\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=17^2=289\Leftrightarrow x=290\left(tm\right)\)

b) \(3x-7\sqrt{x}+4=0\)

ĐK: \(x\ge0\)

Đặt \(\sqrt{x}=t\left(t\ge0\right)\Leftrightarrow t^2=x\)

Ta có phương trình ẩn t: 

\(3t^2-7t+4=0\)( giải đen ta)

\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=\frac{4}{3}\end{cases}}\)

Với t=1 ta có: \(\sqrt{x}=1\Leftrightarrow x=1\) (tm)

Với t=4/3 ta có: \(\sqrt{x}=\frac{4}{3}\Leftrightarrow x=\frac{16}{9}\) (tm)

Câu c em làm tương tự  câu b nhé!

P=A*B

\(=\dfrac{x-7}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{x-7}{\sqrt{x}+2}\)

P nguyên

=>x-4-3 chia hết cho căn x+2

=>căn x+2 thuộc Ư(-3)

=>căn x+2=3

=>x=1

8: Để \(P< \dfrac{1}{4}\) thì \(P-\dfrac{1}{4}< 0\)

\(\Leftrightarrow\dfrac{4\sqrt{x}-8-\sqrt{x}-1}{\sqrt{x}+1}< 0\)

\(\Leftrightarrow3\sqrt{x}< 9\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

29 tháng 8 2021

7.

\(P< 1\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}-1}< 1\)

\(\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}-1}-1< 0\)

\(\Leftrightarrow\dfrac{x+\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}< 0\)

\(\Leftrightarrow\dfrac{x+1}{\sqrt{x}-1}< 0\)

\(\Leftrightarrow\sqrt{x}-1< 0\)

\(\Leftrightarrow x< 1\)

Vậy \(0\le x< 1\)

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) |x| = 4

\(\left[ {_{x =  - 4}^{x = 4}} \right.\)

Vậy \(x \in \{ 4; - 4\} \)

b) |x| = \(\sqrt 7 \)

\(\left[ {_{x =  - \sqrt 7 }^{x = \sqrt 7 }} \right.\)

Vậy \(x \in \{ \sqrt 7 ; - \sqrt 7 \} \)

c) ) |x+5| = 0

x+5 = 0

x = -5

Vậy x = -5

d) \(\left| {x - \sqrt 2 } \right|\) = 0

x - \(\sqrt 2 \) = 0

x = \(\sqrt 2 \)

Vậy x =\(\sqrt 2 \)