Cho ΔABC vuông tại B, vẽ phân giác AD (D∈BC). Từ D vẽ DE ⊥ AC (E∈AC)
a) CM: BD=DE
b) CM: CD lớn hơn BD
c) ED cắt AB tại F. CM: ΔADF=ΔADC
d) CM: BA+BC lớn hơn DE+AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có:
\(AB^2+AC^2=BC^2=3^2+4^2=25\)
\(\Rightarrow BC=5\left(cm\right)\)\(\Rightarrow\Delta ABC⊥A\)
b)
Xét \(\Delta ABD\) và \(\Delta EDB\) có:
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
\(BD\)là cạnh chung
\(\widehat{A}=\widehat{E}=90^o\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(g.c.g\right)\)
\(\Rightarrow DA=DE\)( hai cạnh tương ứng )
\(\RightarrowĐpcm\)
c) Đề sai thì phải!
a, co: ab2+ac2=32+42=9+16=25
bc2=52=25
suy ra :ab2+ac2=bc2
suy ra: tamgiac abc vuong tai a (dinh ly pytago dao )
b, ......
c, ......
Hình cậu tự vẽ nhé:
a, Xét tam giác ABD vad tam giác AED có:
Góc ABD = góc AED= 90 độ
Góc BAD = góc EAD ( Do AD là phân giác góc A)
AD chung
=> Tam giác ABD= tam giác AED ( g.c.g)
=> BD = DE ( hai cạnh tương ứng)
b, Vì góc ADC là góc ngoài tại đỉnh D
=> Góc ADC > góc ABD
=> AC > AD ( quan hệ cạnh đối diện - góc lớn hơn)
=> BD < DC ( quan hệ giữa đường xiên và hình chiếu)
c, Xét tam giác BDF và tam giác EDC có:
Góc DBF = góc DEC = 90 độ
BD=ED ( do tam giác ABD = tam giác AED)
Góc BDF = góc EDC ( góc đối đỉnh)
=> Tam giác BDF = tam giác EDC ( g.c.g)
=> BF = EC ( 2 cạnh tương ứng)
Ta có AF = AB+BF
AC= AE+EC
Mà AB=AC( do tam giác ABD = tam giác AED)
=> AF = AC
Xét tam giác AFD và ta giác ACD có:
AF = AC ( c/m trên)
Góc FAD=CAD( do AD là tian phân giác góc A )
AD chung
=> tam giác AFD = tam giác ACD ( c.g.c)
d, Theo bất đẳng thức tam giác, ta có:
AB+BC > AC (1)
Lại có: BC > DE ( do BC.> BD) (2)
Từ (1);(2)=> AB+BC> AC+DE
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
c: DA=DE
DA<DF
=>DE<DF
a: XétΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b:Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
a) Xét ΔADB vuông tại A và ΔEDB vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔADB=ΔEDB(cạnh huyền-góc nhọn)
Suy ra: AD=ED(Hai cạnh tương ứng)
b) Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(hai cạnh tương ứng)
câu d đâu bn