K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

a. Đặt \(S_{AOB}=c^2;S_{BOC}=a^2;S_{COA}=b^2\Rightarrow S_{ABC}=a^2+b^2+c^2\)

Ta có \(\frac{AM}{OM}=\frac{S_{ABC}}{S_{BOC}}=\frac{a^2+b^2+c^2}{a^2}=1+\frac{b^2+c^2}{a^2}\)

Vậy thì \(\frac{OA}{OM}=\frac{AM}{OM}-1=\frac{b^2+c^2}{a^2}\Rightarrow\sqrt{\frac{OA}{OM}}=\sqrt{\frac{b^2+c^2}{a^2}}\ge\frac{1}{\sqrt{2}}\left(\frac{b}{a}+\frac{a}{b}\right)\)

Tương tự, ta có: \(\sqrt{\frac{OA}{OM}}+\sqrt{\frac{OB}{ON}}+\sqrt{\frac{OC}{OP}}\ge\frac{1}{\sqrt{2}}\left(\frac{a}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}\right)\ge\frac{1}{\sqrt{2}}.6=3\sqrt{2}\)

29 tháng 9 2016

A B C M N P O

Ta có : \(\frac{OM}{AM}=\frac{S_{BOC}}{S_{ABC}}\) ; \(\frac{ON}{BN}=\frac{S_{AOC}}{S_{ABC}}\) ; \(\frac{OP}{CP}=\frac{S_{AOB}}{S_{ABC}}\)

\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}=\frac{S_{ABC}}{S_{ABC}}=1\)

Áp dụng bđt Bunhiacopxki, ta có : 

\(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}=\left(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\right).\left(\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}\right)\ge\)

\(\ge\left(\sqrt{\frac{AM}{OM}.\frac{OM}{AM}}+\sqrt{\frac{BN}{ON}.\frac{ON}{BN}}+\sqrt{\frac{CP}{OP}.\frac{OP}{CP}}\right)^2=\left(1+1+1\right)^2=9\)

Vậy \(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\ge9\) (đpcm)

9 tháng 1 2018

Neu đề bài trên kia là cho >_ 6 thì chứng minh thế nào

21 tháng 2 2020

Kẻ OM vuông góc với BC, kẻ  AI vuông góc với BC

\(\Rightarrow\)OM//AI

Xét tam giác AA'I có OM//AI(cmt)

\(\Rightarrow\)\(\frac{OM}{AI}=\frac{OA'}{AA'}\)(Theo hệ quả Ta-lét)

\(\Rightarrow\)\(\frac{OA'}{AA'}=\frac{\frac{1}{2}.OM.BC}{\frac{1}{2}.AI.BC}=\frac{S_{BDC}}{S_{ABC}}\)

Tương tự, ta có  \(\frac{DB'}{BB'}=\frac{S_{ADC}}{S_{ABC}}\)

               \(\frac{DC'}{CC'}=\frac{S_{ADB}}{S_{ABC}}\)

nên \(\Rightarrow\)đ/cm