K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.

6 tháng 11 2016

a)

b)Từ \(xyz=1\Rightarrow x=\frac{1}{zy};y=\frac{1}{xz};z=\frac{1}{xy}\)

\(M=\frac{z^2y^2}{x\left(z+y\right)}+\frac{x^2z^2}{y\left(x+z\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)

\(\ge\frac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\frac{xy+yz+xz}{2}\)(Bđt Cauchy-Schwarz)

\(\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)(Bđt Cosi)

Dấu = khi \(x=y=z=1\)

8 tháng 11 2016

a) Gọi 5 số là: \(a_0,a_1,a_2,a_3,a_4\)

Lấy \(T_0=a_0\)

      \(T_1=a_0+a_1\)

     \(T_2=a_0+a_1+a_2\)

    \(T_3=a_0+a_1+a_2+a_3\)

    \(T_4=a_0+a_1+a_2+a_3+a_4\)

Trong 5 số: \(T_0,T_1,T_2,T_3,T_4\) có 2 trường hợp sau xảy ra:

TH1: Tồn tại 1 số \(T_i\) chia hết cho 5 => Điều phải chứng minh

TH2: Không có số nào chia hết cho 5 => Trong 5 số đó có 2 số khi chia cho 5 có cùng một số dư (theo nguyên lí Direchlet, vì 5 số đều không chia hết cho 5 nên khi chia cho 5 sẽ cho 4 số dư là {1, 2, 3,4}). Giả sử \(T_i\) và \(T_j\)(với i < j) chia cho 5 có cùng số dư => Hiệu \(T_j-T_i\) chia hết cho 5. Mà hiệu \(T_j-T_i=a_{i+1}+a_{i+2}+...+a_j\) chia hết cho 5 => Điều phải chứng minh.

AH
Akai Haruma
Giáo viên
8 tháng 7

Lời giải:

$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)$

Vì $x+y+z\vdots 6\vdots 2$ nên trong 3 số $x,y,z$ có thể có: 2 số
 lẻ 1 số chẵn, 3 số chẵn

Nếu $x,y,z$ là 3 số chẵn thì hiển nhiên $(x+y)(y+z)(x+z)\vdots 2$

Nếu $x,y,z$ có 2 số lẻ, 1 số chẵn thì tổng 2 số lẻ đó là 1 số chẵn

$\Rightarrow$ trong 3 số $x+y,y+z,x+z$ sẽ có 1 số chẵn.

$\Rightarrow (x+y)(y+z)(x+z)\vdots 2$

Vậy $(x+y)(y+z)(x+z)\vdots 2$

$\Rightarrow 3(x+y)(y+z)(x+z)\vdots 6$

Mà $x+y+z\vdots 6$

$\Rightarrow x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)\vdots 6$

15 tháng 9 2017

Xét 3 số dư của x,y,z khi chia cho 3

+) Nếu 3 số dư là khác nhau thì 3 số dư đó là 0, 1 và 2. Khi đó \(\left(x+y+z\right)⋮3\)

Khi đó, ta cũng có \(\left(x-y\right);\left(y-z\right);\left(z-x\right)\)đều  không chia hết cho 3 

\(\Rightarrow\)  \(\left(x-y\right)\left(y-z\right)\left(z-x\right)\)không chia hết cho 3 ( vô lý )

+) Nếu có 2 số dư bằng nhau thì x + y + z  không chia hết cho 3

Trong khi đó một trong 3 hiệu x - y ; y - z ; z - x  chia hết cho 3

\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)\)  không chia hết cho 3 ( vô lý )

+) Nếu có 3 số dư bằng nhau thì \(\left(x-y\right)⋮3\)\(\left(y-z\right)⋮3\)\(\left(z-x\right)⋮3\)

\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮27\) 

Mà \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=x+y+z\Rightarrow x+y+z⋮27\)

Vậy ta có điều phải chứng minh.

6 tháng 11 2017

nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

mong các bn đừng làm vậy 

19 tháng 1 2016

Ta có các nhận xét:
a21(mod3)a20(mod3)(1)
a21(mod4)a20(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2y21(mod3)
Nên z21+12(mod3): vô lý nên ta có đpcm.
b) Tương tự câu a, ta cm được tồn tại 1 số trong x;y;z chia hết cho 4. Vậy ta có đpcm.