K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 5 2019

ĐKXĐ: \(x\ge-\frac{1}{2}\)

\(\Leftrightarrow x^2-8x+16+2x+1-6\sqrt{2x+1}+9=0\)

\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{2x+1}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(\sqrt{2x+1}-3\right)^2=0\end{matrix}\right.\) \(\Rightarrow x=4\)

NV
6 tháng 10 2021

ĐKXĐ: \(x\ge-\dfrac{1}{2}\)

\(\Leftrightarrow\left(x^2-8x+16\right)+\left(2x+1-6\sqrt{2x+1}+9\right)=0\)

\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{2x+1}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\\sqrt{2x+1}-3=0\end{matrix}\right.\) \(\Leftrightarrow x=4\)

16 tháng 9 2023

\(\Leftrightarrow x^2-6x+8=6\sqrt{2x+1}-18\left(Đk:x\ge-\dfrac{1}{2}\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=\dfrac{12\left(x-4\right)}{\sqrt{2x+1}+3}\left(\sqrt{2x+1}+3>0\right)\)

+) \(x=4\left(TM\right)\)

+) \(x\ne4\Rightarrow x-2=\dfrac{12}{\sqrt{2x+1}+3}\)

            \(\Leftrightarrow x-4=\dfrac{12-2\left(\sqrt{2x+1}+3\right)}{\sqrt{2x+1}+3}\)

             \(\Leftrightarrow x-4+\dfrac{2\left(x-4\right)}{\left(\sqrt{2x+1}+3\right)^2}=0\)

             \(\Leftrightarrow1+\dfrac{2}{\left(\sqrt{2x+1}+3\right)^2}=0\left(x\ne4\right)\)

    Vì \(\dfrac{2}{\left(\sqrt{2x+1}+3\right)^2}>0\forall x\) => VT>0

=> phương trình vô nghiệm

Vậy \(S=\left\{4\right\}\)

12 tháng 12 2017

15 tháng 5 2021

\(|x-6|=-5x+9\)

Xét \(x\ge6\)thì \(pt< =>x-6=-5x+9\)

\(< =>x-6+5x-9=0\)

\(< =>6x-15=0\)

\(< =>x=\frac{15}{6}\)(ktm)

Xét \(x< 6\)thì \(pt< =>x-6=5x-9\)

\(< =>4x-9+6=0\)

\(< =>4x-3=0< =>x=\frac{3}{4}\)(tm)

Vậy ...

22 tháng 7 2016

ĐKXĐ: \(x\ge-\frac{1}{2}\)

\(x^2-6x+26=6\sqrt{2x+1}\)

\(\Rightarrow2x+1-6\sqrt{2x+1}+x^2-8x+25=0\)

Đặt \(a=\sqrt{2x+1}\left(a\ge0\right)\), ta được pt: a2 - 6a + x2 - 8x + 25 = 0

Có: \(\Delta=36-4\left(x^2-8x+25\right)=-4x^2+32x-64=-4\left(x-4\right)^2\)\(\)

Vì \(\Delta< 0\) nên pt vô nghiệm

                                                                Vậy \(x\in\left\{\phi\right\}\)

22 tháng 7 2016

GT \(\Leftrightarrow x^2-6x+26-6\sqrt{2x+1}=0\)

       \(\Leftrightarrow2x+1-2\sqrt{2x+1}\times3+9+x^2-8x+16\)

       \(\Leftrightarrow\left(\sqrt{2x+1}-3\right)^2+\left(x-4\right)^2=0\)

suy ra x = 4

        

29 tháng 7 2017

Ta có:

\(VT=\sqrt{3x^2-6x+19}+\sqrt{x^2-2x+26}\)

\(=\sqrt{3\left(x-1\right)^2+16}+\sqrt{\left(x-1\right)^2+25}\ge4+5=9\)

\(VP=8-x^2+2x=9-\left(x-1\right)^2\le9\)

Dấu = xảy ra khi \(x=1\)

27 tháng 3 2017

cách khác đơn giản hơn nhiều 

Đk:\(x\ge1\)

\(pt\Leftrightarrow\sqrt{2\left(x-1\right)\left(x+4\right)}+\sqrt{2\left(x-1\right)\left(x+3\right)}-3\sqrt{x+4}-3\sqrt{x+3}-1=0\)

\(\Leftrightarrow\sqrt{2\left(x-1\right)\left(x+4\right)}-3\sqrt{x+4}+\sqrt{2\left(x-1\right)\left(x+3\right)}-3\sqrt{x+3}=1\)

\(\Leftrightarrow\sqrt{x+4}\left(\sqrt{2\left(x-1\right)}-3\right)+\sqrt{x+3}\left(\sqrt{2\left(x-1\right)}-3\right)=1\)

\(\Leftrightarrow\left(\sqrt{x+4}+\sqrt{x+3}\right)\left(\sqrt{2\left(x-1\right)}-3\right)=1\)

Xét Ư(1)={1;-1}={....}

Dễ nhé, tự làm nốt

27 tháng 3 2017

Đk: \(x\ge1\)

\(pt\Leftrightarrow\sqrt{2x^2+6x-8}+\sqrt{2x^2+4x-6}-3\sqrt{x+4}-3\sqrt{x+3}-1=0\)

\(\Leftrightarrow\sqrt{2x^2+6x-8}-\frac{10}{3}\sqrt{x+3}+\frac{1}{3}\sqrt{x+3}-1\sqrt{2x^2+4x-6}-3\sqrt{x+4}=0\)

\(\Leftrightarrow\frac{2x^2+6x-8-\frac{100}{9}\left(x+3\right)}{\sqrt{2x^2+6x-8}+\frac{10}{3}\sqrt{x+3}}+\frac{x-6}{3\left(\sqrt{x+3}+3\right)}+\frac{2x^2+4x-6-9\left(x+4\right)}{\sqrt{2x^2+4x-6}+3\sqrt{x+4}}=0\)

Để đỡ rối ta đặt mấy cái mẫu \(\hept{\begin{cases}N=\sqrt{2x^2+6x-8}+\frac{10}{3}\sqrt{x+3}>0\\H=\sqrt{x+3}+3>0\\T=\sqrt{2x^2+4x-6}+3\sqrt{x+4}>0\end{cases}}\)

\(\Leftrightarrow\frac{18x^2-46x-372}{9N}+\frac{x-6}{3H}+\frac{2x^2-5x-42}{T}=0\)

\(\Leftrightarrow\left(x-6\right)\left(\frac{18x+62}{9N}+\frac{1}{3H}+\frac{2x+7}{T}\right)=0\)

Dễ  thấy: \(\forall x\ge1\) thì \(\frac{18x+62}{9N}+\frac{1}{3H}+\frac{2x+7}{T}>0\)

\(\Rightarrow x-6=0\Rightarrow x=6\) (thỏa mãn)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Bình phương hai vế ta được

\(2{x^2} - 3x - 1 = 2x - 3\)

\(\begin{array}{l} \Leftrightarrow 2{x^2} - 5x +2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \(2x - 3 \ge 0\) thì chỉ \(x=2\) thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{2 \right\}\)

b) Bình phương hai vế ta được

\(\begin{array}{l}4{x^2} - 6x - 6 = {x^2} - 6\\ \Leftrightarrow 3{x^2} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \({x^2} - 6 \ge 0\) thì thấy chỉ có nghiệm \(x = 2\)thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)

c) \(\sqrt {x + 9}  = 2x - 3\)(*)

Ta có: \(2x - 3 \ge 0 \Leftrightarrow x \ge \frac{3}{2}\)

Bình phương hai vế của (*) ta được:

\(\begin{array}{l}x + 9 = {\left( {2x - 3} \right)^2}\\ \Leftrightarrow 4{x^2} - 12x + 9 = x + 9\\ \Leftrightarrow 4{x^2} - 13x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {KTM} \right)\\x = \frac{{13}}{4}\left( {TM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{13}}{4}} \right\}\)

d) \(\sqrt { - {x^2} + 4x - 2}  = 2 - x\)(**)

Ta có: \(2 - x \ge 0 \Leftrightarrow x \le 2\)

Bình phương hai vế của (**) ta được:

\(\begin{array}{l} - {x^2} + 4x - 2 = {\left( {2 - x} \right)^2}\\ \Leftrightarrow  - {x^2} + 4x - 2 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 8x + 6 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = 3\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)

26 tháng 2 2016

\(\sqrt{x^2-6x+6}=2x-1\) (1)

\(\Leftrightarrow\) \(\begin{cases}2x-1\ge0\\x^2-6x+6=\left(2x-1\right)^2\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}x\ge\frac{1}{2}\\3x^2+2x-5=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge\frac{1}{2}\\x=1;x=-\frac{5}{3}\end{cases}\) 

\(\Leftrightarrow x=1\)

Vậy phương trình đã cho có nghiệm \(x=1\)