Cho a^2+b^2+c^2=1
Chứng minh: abc+2(1+a+b+c+ab+ac+bc) >=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
1a)\(a^2+b^2\ge\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge\dfrac{1}{4}\)(1)
Lại có:\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}=\dfrac{1}{4}\)
\(\Rightarrow\left(1\right)\) đúng\(\Rightarrowđpcm\)
1b)\(a^2+b^2+c^2\ge\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{a^2}{2}+\dfrac{b^2}{2}+\dfrac{c^2}{2}\ge\dfrac{1}{6}\)(2)
Lại có:\(\dfrac{a^2}{2}+\dfrac{b^2}{2}+\dfrac{c^2}{2}\ge\dfrac{\left(a+b+c\right)^2}{6}=\dfrac{1}{6}\)
\(\Rightarrow\left(2\right)\) đúng\(\Rightarrowđpcm\)
2b)Ta có:\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(bđt phụ)
\(\Leftrightarrow ab+bc+ca\le\dfrac{4^2}{3}=\dfrac{16}{3}\)
\(\Rightarrow MAXA=\dfrac{16}{3}\Leftrightarrow x=y=z=\dfrac{4}{3}\)
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)
\(=abc-\left(ab+bc+ca\right)+a+b+c-1\)
\(=abc-abc+1-1=0\) (đpcm)
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)
\(\Rightarrow VT=\dfrac{1}{\dfrac{y}{x}\left(\dfrac{z}{y}+1\right)}+\dfrac{1}{\dfrac{z}{y}\left(\dfrac{x}{z}+1\right)}+\dfrac{1}{\dfrac{x}{z}\left(\dfrac{y}{x}+1\right)}\)
\(VT=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)
\(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\dfrac{3}{2}\)
Lời giải:
Áp dụng BĐT Cô-si:
$a^2+1\geq 2a$
$b^2+1\geq 2b$
$c^2+1\geq 2c$
$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)$
Cũng áp dụng BĐT Cô-si: $a+b+c\geq 3\sqrt[3]{abc}=3$
$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)\geq a+b+c+3$
$\Rightarrow a^2+b^2+c^2\geq a+b+c$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$