K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

ko tin có thể thử

Thay x=-1 vào đa thức Q, ta được:

\(m\cdot\left(-1\right)^2+2m\cdot\left(-1\right)-3=0\)

\(\Leftrightarrow m-2m-3=0\)

\(\Leftrightarrow-m=3\)

hay m=-3

15 tháng 8 2021

em cảm ơn chị ạ

23 tháng 4 2016

bạn chỉ cần thế nghiệm vào rồi tính m là đc rồi

DD
13 tháng 5 2021

A, \(M\left(-1\right)=0\)

\(m\left(-1\right)^2+2m\left(-1\right)-3=0\)

\(-m-3=0\)

\(m=-3\).

B, \(A\left(x\right)=2x^3+x=x\left(2x^2+1\right)=0\)

\(\Leftrightarrow x=0\)vì \(2x^2+1>0\forall x\inℝ\).

13 tháng 5 2021

A, Xét đa thức \(M\left(x\right)=mx^2+2mx-3\)

\(M\left(-1\right)=m-2m-3\)

Mà \(x=-1\) là 1 nghiệm của \(M\left(x\right)\)

\(\Rightarrow M\left(-1\right)=0\)

\(\Rightarrow m-2m-3=0\)

\(-m-3=0\)

\(\Rightarrow m=-3\)

Vậy \(m=-3\).

B, Cho \(A\left(x\right)=0\Rightarrow2x^3+x=0\)

\(\Rightarrow x\left(2x^2+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x^2+1=0\end{cases}}\)

Ta có: \(2x^2\ge0\forall x\)

\(\Rightarrow2x^2+1>0\)

\(\Rightarrow x=0\) là nghiệm của đa thức \(A\left(x\right)=2x^3+x\)

Vậy đa thức \(A\left(x\right)=2x^3+x\) có 1 nghiệm duy nhất là \(x=0\).

20 tháng 3 2017

 Vì g(x) nhận x = -1 là nghiệm nên

g(-1) = 0 ⇒ m + 3 + 2 = 0 ⇒ m = -5

Chọn A

2 tháng 5 2022

a) cho f(x )=0

\(=>2x^2-x=0=>x\left(2x-1\right)=0\)

\(=>\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

b)cho \(f\left(2\right)+g\left(2\right)=0\)

\(=>2.2^2-2+m.2^2+2m+1=0\)

\(8-2+4m+2m+1=0\)

\(6+2m\left(2+1\right)+1=0\)

\(6+6m=-1\)

\(6m=-7=>m=-\dfrac{7}{6}\)

2 tháng 5 2022

Cảm ơn bạn. Vị cứu tinh^^

2 tháng 5 2022

Giúp mik vs khocroi