K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

Gọi \(ƯCLN\)\((2n+1,6n+7)=d\)

Ta có : \(\hept{\begin{cases}2n+1⋮d\\6n+7⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}6(2n+1)⋮d\\2(6n+7)⋮d\end{cases}}\)

Làm nốt nhé :v

19 tháng 5 2019

Gọi ( 2n+1 , 6n+7 )=d

=>\(\hept{\begin{cases}2n+1⋮d\\6n+7⋮d\end{cases}}\)

===>\(\hept{\begin{cases}6\cdot\left(2n+1\right)⋮d\\2\cdot\left(6n+7\right)⋮d\end{cases}}\)

=>\(\hept{\begin{cases}12n+6⋮d\\12n+14⋮d\end{cases}}\)

<=>(12n+14 - 12n+6) \(⋮\)d

<=>8 \(⋮\)d

=> d  thuộc ước của 8.

Bạn tự cm d=1 nhé!

~ Chúc bạn hok tốt ~

2 tháng 4 2016

Gọi ƯCLN 6n+7 và 2n+1 là d

6n+7 chia hết d 

2n+1 chia hết d suy ra 6n+3 chia hết d

suy ra (6n+7)-(6n+3)=4 chia hết d

suy ra d bằng 1 ; 4. mà 2n+1 là số lẻ nên d=1 . nên p/s dố tối giản

2 tháng 4 2016

goi d LA U (6N+7/2N+1)

=>6N+7 CHIA HET CHO D=> 2(6N+14) CHIA HET CHO D

=>2N+1 CHIA HET CHO D=>6(2N+6) ................

=>1 CHIA HET CHO D

=>D=1

=>\(\frac{6N+7}{2N+1}\) LA P/S TOI GIAN

K NHR

29 tháng 5 2017

Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)

Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)

\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)

\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)

\(\Rightarrow5n+1⋮d\)

\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản

9 tháng 6 2017

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

21 tháng 10 2015

vào câu hỏi tương tự  dựa theo cách lm  để giải nhé 

KHÔNG K KHÔNG TRẢ LỜI

Gọi ƯCLN(2n+1;2n(n+1))=d

11 tháng 4 2021

a,Gọi ƯCLN(n+3,2n+7)=d

n+3⋮d ⇒2n+6⋮d

2n+7⋮d ⇒2n+7⋮d

(2n+7)-(2n+6)⋮d

1⋮d ⇒ƯCLN(n+3,2n+7)=1

Vậy phân số n+3/2n+7 là phân số tối giản

11 tháng 4 2021

a,Gọi ƯCLN(3n+7,6n+15)=d

3n+7⋮d ⇒6n+14⋮d

6n+15⋮d ⇒6n+15⋮d

(6n+15)-(6n+14)⋮d

1⋮d ⇒ƯCLN(3n+7,6n+15)=1

Vậy phân số 3n+7/6n+15 là phân số tối giản

6 tháng 7 2021

Gọi d là (2n+5;3n+7)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

=> [6n+15 - ( 6n+14 )] \(⋮\) d 

=> 1 \(⋮\)d

=> phân số trên tối giản 

11 tháng 4 2016

gọi d là ƯCLN của 6n+2 và 2n+1

=> 6n+2 chia hết cho d và 2n+1 chia hết cho d

=>6n+2 chia hết cho d và 3(2n+1) = 6n+3 chia hết cho d

=>(6n+3) - (6n+2) chia hết cho d

=> 6n+ 3 - 6n -2 chia hết cho d=>1 chia hết cho d => d = 1

=> ƯCLN(6n+2;2n+1) = 1=>6n+2/2n+1 là phân số tối giản => đpcm

3 tháng 2 2017

Gọi d là ƯCLN(12n + 1; 30n + 2) Nên ta có :

12n + 1 ⋮ d và 30n + 2 ⋮ d

=> 5(12n + 1) ⋮ d và 2(30n + 2) ⋮ d

=> 60n + 5 ⋮ d và 60n + 4 ⋮ d

=> (60n + 5) - (60n + 4) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN(12n + 1; 30n + 2) = 1 nên (12n + 1)/(30n + 2) tối giản ( đpcm )