Quy đồng mẫu số các phân số sau :
a) \(\frac{7n}{15}\)và \(\frac{20}{39}\)
b) \(\frac{14}{41}\)và \(\frac{17n}{54}\)
Giải chi tiết từng phần hộ mình nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{5}{6n}\)và \(\frac{7}{15}\)
=> MSC = \(6n\cdot15=90n\)
\(\Rightarrow\frac{5}{6n}=\frac{5\cdot15}{90n}=\frac{75}{90n}\)
\(\Rightarrow\frac{7}{15}=\frac{7\cdot6n}{90n}=\frac{42n}{90n}\)
b/ \(\frac{9x}{24}\)và \(\frac{12}{36}\)
=> MSC = 72
\(\Rightarrow\frac{9x}{24}=\frac{9x\cdot3}{72}=\frac{27x}{72}\)
\(\Rightarrow\frac{12}{36}=\frac{12\cdot2}{72}=\frac{24}{72}\)
a)MSC = 6n . 15 = 90n
5/6n = 5 . 15/60n . 15 = 75/90n
7/15 = 7 . 6n/15 . 6n =42n/90n
#Louis
\(\frac{2}{n}+\frac{2}{n+1}=\frac{2\left(n+1\right)}{n\left(n+1\right)}+\frac{2n}{n\left(n+1\right)}\)\(=\frac{2\left(n+1\right)+2n}{n\left(n+1\right)}=\frac{2n+2+2n}{n\left(n+1\right)}=\frac{4n+2}{n\left(n+1\right)}\)
\(\frac{1}{n\left(n+1\right)}+\frac{-2}{n+1}=\frac{1}{n\left(n+1\right)}+\frac{-2n}{n\left(n+1\right)}\)\(=\frac{1+\left(-2n\right)}{n\left(n+1\right)}=\frac{1-2n}{n\left(n+1\right)}\)
\(a,\)\(\frac{2}{n}\)và \(\frac{2}{n+1}\)
Có : \(\frac{2}{n}=\frac{2\left(n+1\right)}{n\left(n+1\right)}\)
\(\frac{2}{n+1}=\frac{2n}{n\left(n+1\right)}\)
Vậy ta có : \(\frac{2\left(n+1\right)}{n\left(n+1\right)}\)và \(\frac{2n}{n\left(n+1\right)}\)
\(b,\)\(\frac{1}{n\left(n+1\right)}\)và \(\frac{-2}{n+1}\)
Có : \(\frac{1}{n\left(n+1\right)}\)
\(\frac{-2}{n+1}=\frac{-2n}{n\left(n+1\right)}\)
Vậy ta có : \(\frac{1}{n\left(n+1\right)}\)và \(\frac{-2n}{n\left(n+1\right)}\)
a) Ta có: BCNN(16, 24) = 48
48 : 16 = 3; 48 : 24 = 2. Do đó:
\(\frac{3}{{16}} = \frac{{3.3}}{{16.3}} = \frac{9}{{48}}\)
\(\frac{5}{{24}} = \frac{{5.2}}{{24.2}} = \frac{{10}}{{48}}\).
b) Ta có: BCNN(20, 30, 15) = 60
60 : 20 = 3; 60 : 30 = 2; 60 : 15 = 4. Do đó:
\(\frac{3}{{20}} = \frac{{3.3}}{{20.3}} = \frac{9}{{60}}\)
\(\frac{{11}}{{30}} = \frac{{11.2}}{{30.2}} = \frac{{22}}{{60}}\)
\(\frac{7}{{15}} = \frac{{7.4}}{{15.4}} = \frac{{28}}{{60}}\).
a) Ta có: \(12 = 2^2 . 3; 15 = 3.5\)
\(BCNN(12, 15) = 2^2.3.5 = 60\) nên chọn mẫu chung là 60.
\(\begin{array}{l}\frac{9}{{12}} = \frac{{9.5}}{{12.5}} = \frac{{45}}{{60}}\\\frac{7}{{15}} = \frac{{7.4}}{{15.4}} = \frac{{28}}{{60}}\end{array}\)
b) Ta có: \(10 = 2.5; 4 = 2^2; 14=2.7\)
\(BCNN(10, 4, 14) =2^2.5.7= 140\) nên chọn mẫu chung là 140.
\(\begin{array}{l}\frac{7}{{10}} = \frac{{7.14}}{{10.14}} = \frac{{98}}{{140}}\\\frac{3}{4} = \frac{{3.35}}{{4.35}} = \frac{{105}}{{140}}\\\frac{9}{{14}} = \frac{{9.10}}{{14.10}} = \frac{{90}}{{140}}\end{array}\)
\(\text{ Bài giải }\)
\(a,\text{ }\frac{7n}{15}\text{ và }\frac{20}{39}\)
\(BCNN\left(15,39\right)=195\)
\(\frac{7n}{15}=\frac{7n\cdot13}{15\cdot13}=\frac{91n}{195}\) \(\frac{20}{39}=\frac{20\cdot5}{39\cdot5}=\frac{100}{195}\)
\(b,\text{ }\frac{14}{41}\text{ và }\frac{17n}{54}\)
\(BCNN\left(41,54\right)=2214\)
\(\frac{14}{41}=\frac{14\cdot54}{41\cdot54}=\frac{756}{2214}\) \(\frac{17n}{54}=\frac{17n\cdot41}{54\cdot41}=\frac{697n}{2214}\)