K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2015

Gọi UCLN(2n+5;4n+11) =d => 2n+5 chia hết cho d  ; 4n+11 chia hết cho d

ta có 4n+11 - 2(2n+5) = 4n +11 - 4n-10=1 chia hết cho d

=> d =1

Vật hai số là nguyên tố cubngf nhau.

20 tháng 10 2023

Mình mẫu đầu với cuối nhé:

a)  Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)  

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow3⋮d\)

 \(\Rightarrow d\in\left\{1,3\right\}\)

Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)

Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.

 e) \(ƯCLN\left(2n+3,3n+5\right)=d\)

 \(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.

26 tháng 11 2021

Giải thích các bước giải:

a.Ta có :
3n+12⋮n+23n+12⋮n+2 

→3n+6+6⋮n+2→3n+6+6⋮n+2 

→3(n+2)+6⋮n+2→3(n+2)+6⋮n+2 

→6⋮n+2→6⋮n+2 

→n+2∈{1,2,3,6,−1,−2,−3,−6}→n+2∈{1,2,3,6,−1,−2,−3,−6}

→n∈{−1,0,1,4,−3,−4,−5,−8}→n∈{−1,0,1,4,−3,−4,−5,−8}

b.Gọi (2n+3,4n+8)=d(2n+3,4n+8)=d

→{2n+3⋮d4n+8⋮d→{2n+3⋮d4n+8⋮d

→4n+8−2(2n+3)⋮d→2⋮d→4n+8−2(2n+3)⋮d→2⋮d

Vì 2n+3⋮d→d2n+3⋮d→d lẻ

→d=1→d=1

→2n+3,4n+8→2n+3,4n+8 là hai số nguyên tố cùng nhau.

c.Gọi (3n+4,5n+1)=d(3n+4,5n+1)=d
→{3n+4⋮d5n+1⋮d→{3n+4⋮d5n+1⋮d

→5(3n+4)−3(5n+1)⋮d→5(3n+4)−3(5n+1)⋮d

→17⋮d→17⋮d

→→Để (3n+4,5n+1)=1(3n+4,5n+1)=1

→d=1→d=1

→17⋮̸d→17⋮̸d

→3n+4⋮̸17→3n+4⋮̸17

→3n+4≠17k→3n+4≠17k

→3n≠17k−4→3n≠17k−4

→3n≠17(3q+2)−4,k=3q+2→3n≠17(3q+2)−4,k=3q+2

→3n≠51q+30→3n≠51q+30

→n≠17q+10,q∈N→n≠17q+10,q∈N

21 tháng 8 2023

Đặt ƯCLN (4n+5; 2n+2) = d

\(\left\{{}\begin{matrix}4n+5⋮d\\2n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4n+5⋮d\\4n+4⋮d\end{matrix}\right.\Rightarrow1⋮d\Rightarrow d=1\)

⇒ ƯCLN (4n+5; 2n+2)=1

Vậy 

Chứng mình rằng 4n+5 và 2n+2 là 2 số nguyên tố cùng nhau :
 

23 tháng 12 2017

a) Gọi ƯCLN (n + 3; n + 2) = d.

Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d

Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.

b) Gọi ƯCLN (3n+4; 3n + 7) = đ.

Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên

d = 1 hoặc d = 3.

Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.

c) Gọi ƯCLN (2n + 3; 4n + 8) = d.

Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d

nên d = 1 hoặc d = 2.

Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.

26 tháng 10 2021

a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau

13 tháng 7 2016

cho B=3+3^2+3^3+.........+3^60 Chứng ninh rắng B chia hết cho 13

13 tháng 7 2016

Gọi UCLN của (  2n+3 ; 4n+7 ) là d

=> 2n + 3 chia hết cho d => 2(2n+3) chia hết cho d => 4n + 6 chia hết cho d 

Ta có : ( 4n+7)-(4n+6)=1 chia hết cho d => d=1

Vậy 2n + 3 và 4n+7 là 2 số nguyên tố cùng nhau 

23 tháng 12 2018

gọi uoc chung cua 3n + 4 va 4n+5 là x

ta co

3n+4chia het cho x suy ra 12n+16 chia het cho x

4n+5 chia het cho x suy ra 12n+15 chia het cho x

suy ra 12n+16-12n+15=1 chia het cho x suy ra x =1

vay 4n+5 và 3n+4 nguyen to cung nhau

23 tháng 12 2018

Gọi ƯCLN (3n+4,4n+5) là d ( d thuộc N*)

suy ra 3n+4 chia hết cho d , 4n+5 chia hết cho d.

Xét 3n+4 chia hết cho d

suy ra 4(3n+4) chia hết cho d

    hay 12n+16 chia hết cho d (1)

4n+5chia hết cho d

suy ra 3(4n+5) chia hết cho d

 hay 12n+15 chia hết cho d (2)

(1),(2) suy ra (12n+16)-(12n+15)chia hết cho d.

                                                   1 chia hết cho d

                                suy ra d=1  

 suy ra ƯCLN(3n+4,4n+5)=1

  Vậy 3n+4,4n+5 là 2 số nguyên tố cùng nhau

4 tháng 7 2016

Gọi UCLN của (2n+5;3n+7) = d

Ta có 2n+5 chia hết cho d \(\Rightarrow\)  3(2n+5) \(⋮\) d \(\Rightarrow\) 6n+15 \(⋮\) d

         3n+7 chia hết cho d \(\Rightarrow\) 2(3n+7)\(⋮\) d \(\Rightarrow\) 6n +14  \(⋮\) d

\(\Rightarrow\) (6n+15)-(6n+14) \(⋮\) d

\(\Rightarrow\) 1 \(⋮\) d

\(\Rightarrow\) d=1

\(\Rightarrow\) UCLN (2n+5;3n+7) = 1

\(\Rightarrow\) 2n+5 và 3n+7 là hai số nguyên tố cùng nhau