Chứng minh rằng số nghiệm của một đa thức một biến không vượt quá bậc của nó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử P( x ) có ít nhất 3 nghiệm phân biệt : x1 ; x2 ; x3
\( \implies\) P( x1 ) = 0 \(\iff\) ax12 + bx1 + c = 0 ( 1 )
P( x2 ) = 0 \(\iff\) ax22 + bx2 + c = 0 ( 2 )
P( x3 ) = 0 \(\iff\) ax32 + bx3 + c = 0 ( 3 )
+)Lấy ( 1 ) - ( 2 ) vế với vế ta được : ( ax12 + bx1 + c ) - ( ax22 + bx2 + c ) = 0
\( \implies\) ax12 + bx1 - ax22 - bx2 = 0
\( \implies\) ( ax12 - ax22 ) + ( bx1 - bx2 ) = 0
\( \implies\) a( x12 - x22 ) + b( x1 - x2 ) = 0
\( \implies\) a( x1 - x2 )( x1 + x2 ) + b(x1 - x2 ) = 0
\( \implies\) ( x1 - x2 ) [ a( x1 + x2 ) + b ] = 0
Mà x1 - x2 khác 0 \( \implies\) a( x1 + x2 ) + b = 0 ( 4 )
+)Lấy ( 1 ) - ( 3 ) vế với vế ta được : ( ax12 + bx1 + c ) - ( ax32 + bx3 + c ) = 0
\( \implies\) ax12 + bx1 - ax32 - bx3 = 0
\( \implies\) ( ax12 - ax32 ) + ( bx1 - bx3 ) = 0
\( \implies\) a( x12 - x32 ) + b( x1 - x3 ) = 0
\( \implies\) a( x1 - x3 )( x1 + x3 ) + b(x1 - x3 ) = 0
\( \implies\) ( x1 - x3 ) [ a( x1 + x3 ) + b ] = 0
Mà x1 - x3 khác 0 \( \implies\) a( x1 + x3 ) + b = 0 ( 5 )
+)Lấy ( 4 ) - ( 5 ) vế với vế ta được : [ a( x1 + x2 ) + b ] - [ a( x1 + x3 ) + b ] = 0
\( \implies\) a( x1 + x2 ) + b - a( x1 + x3 ) - b = 0
\( \implies\) a( x1 + x2 ) - a( x1 + x3 ) = 0
\( \implies\) a( x1 + x2 - x1 - x3 ) = 0
\( \implies\) a ( x2 - x3 ) = 0
Mà x2 - x3 khác 0 \( \implies\) a = 0 ( vô lý )
Vậy P( x ) luôn không có quá 2 nghiệm phân biệt
a/ \(M\left(x\right)=-x^2+5\)
Có \(-x^2\le0\forall x\)
=> \(M\left(x\right)\le5\forall x\)
=> M(x) không có nghiệm.
2/
Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có
\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)
\(\Leftrightarrow a=2\)
Vậy...
sai vì có những trường hợp đa thức không có nghiêm nào.
ví dụ:
\(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0\)
vậy phương trình vô nghiệm.
theo đầu bài thì đa thức trên phải có hai nghiệm, nhưng theo chứng minh trên thì đa thức không có nghiệm nào (tức là số nghiệm của 1 đa thức một biến không phải lúc nào cũng bằng số bậc của đa thức)
- Một đa thức ( khác đa thức 0) có thể có một nghiệm, hai
nghiệm, hoặc không có nghiệm.
- Người ta đã chứng minh được rằng số nghiệm của một
đa thức (khác đa thức 0) không vượt quá bậc của nó.
Chẳng hạn: Đa thức bậc nhất chỉ có một nghiệm, đa thức
bậc hai có không quá hai nghiệm,
Vũ Cao Minh( Kudo Shinichi - Thám Tử )
Mk bảo chứng minh mak