K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2019

\(A=\sqrt{4+\sqrt{7}}-\sqrt{4+\sqrt{7}}\Leftrightarrow\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{\sqrt{7}^2+2\sqrt{7}+1}-\sqrt{\sqrt{7}^2+2\sqrt{7}+1}\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{7}+1-\sqrt{7}-1=0\)

\(\Leftrightarrow A=0\)

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Câu 1,2 bạn đã đăng và có lời giải rồi

Câu 3:

\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{\sqrt{3}-2\sqrt{5}}{\sqrt{2}}\)

a: Ta có: \(\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\)

\(=\sqrt{5}+\sqrt{3}-\sqrt{5}-1\)

\(=\sqrt{3}-1\)

b: Ta có: \(\sqrt{17-2\sqrt{72}}+\sqrt{19+2\sqrt{18}}\)

\(=3-2\sqrt{2}+3\sqrt{2}+1\)

\(=4+\sqrt{2}\)

c: Ta có: \(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\)

\(=2\sqrt{2}-2+2\sqrt{2}+1\)

\(=4\sqrt{2}-1\)

22 tháng 8 2021

a)

\(\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{5+2\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{5+2\sqrt{5}\cdot\sqrt{1}+1}\\ =\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{1}\right)^2}\\ =\sqrt{5}+\sqrt{3}-\sqrt{5}-\sqrt{1}\\ =\sqrt{3}-\sqrt{1}\)

b)

\(\sqrt{17-2\sqrt{72}}+\sqrt{19+2\sqrt{18}}\\ =\sqrt{9-2\sqrt{9}\cdot\sqrt{8}+8}+\sqrt{18+2\sqrt{18}\cdot\sqrt{1}+1}\\ =\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}+1\right)^2}\\ =3-2\sqrt{2}+3\sqrt{2}+1\\ =4+\sqrt{2}\)

c)

\(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\\ =\sqrt{8-2\sqrt{8}\cdot\sqrt{4}+4}+\sqrt{8+2\sqrt{8}\cdot\sqrt{1}+1}\\ =\sqrt{\left(2\sqrt{2}-2\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}\\ =2\sqrt{2}-2+2\sqrt{2}+1\\ =4\sqrt{2}-1\)

12 tháng 10 2023

a: \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)

\(=4-\sqrt{15}+\sqrt{15}=4\)

b: \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=2+\sqrt{3}-2+\sqrt{3}\)

\(=2\sqrt{3}\)

c: \(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(=2\sqrt{5}+3-2\sqrt{5}+3=6\)

22 tháng 7 2016

a) Đặt A=\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

<=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)=\(\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(\sqrt{7}+1-\sqrt{7}+1=2\)

=> \(A=\frac{2}{\sqrt{2}}\sqrt{2}\)

b) Ta đặt \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

=> \(B^2=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)

             =  \(8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{5-2\sqrt{5}+1}\)=\(8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}\)

\(5+2\sqrt{5}+1=\left(\sqrt{5}+1\right)^2\)

=>  B=\(\sqrt{5}+1\)

c) Ta xét \(A=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}\)

=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{3}\cdot\sqrt{5}}+\sqrt{8-2\sqrt{3}\cdot\sqrt{5}}\)

                 =  \(\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

                =  \(\sqrt{3}+\sqrt{5}+\sqrt{5}-\sqrt{3}\)\(2\sqrt{5}\)

=> A=\(\sqrt{5}\)

Ta có : \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(A-\sqrt{6-2\sqrt{5}}\)

\(\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1\)=1

22 tháng 7 2016

Phần a) chỗ cuối viết thiếu dấu =.

Sẽ là A=\(\sqrt{2}\)nha

24 tháng 9 2023

a)

\(\left(3-\sqrt{15}\right)\sqrt{4+\sqrt{15}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{5+2\sqrt{15}+3}}{\sqrt{2}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}{\sqrt{2}}\\ =\left(\sqrt{9}-\sqrt{15}\right)\cdot\dfrac{\left|\sqrt{5}+\sqrt{3}\right|}{\sqrt{2}}\)

\(=\sqrt{3}\left(\sqrt{3}-\sqrt{5}\right)\cdot\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}\) (vì \(\sqrt{5}+\sqrt{3}>0\))

\(=\sqrt{3}\cdot\dfrac{3-5}{\sqrt{2}}\\ =\sqrt{3}\cdot\dfrac{-2}{\sqrt{2}}\\ =\sqrt{3}\cdot\dfrac{-\sqrt{4}}{\sqrt{2}}\\ =-\sqrt{6}\)

b)

\(\sqrt{29-12\sqrt{5}}-\sqrt{24-8\sqrt{5}}\\ =\sqrt{20-2\cdot3\cdot2\sqrt{5}+9}-\sqrt{20-2\cdot2\cdot2\sqrt{5}+4}\\ =\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}-2\right)^2}\\ =\left|2\sqrt{5}-3\right|-\left|2\sqrt{5}-2\right|\)

\(=2\sqrt{5}-3-\left(2\sqrt{5}-2\right)\) (vì \(2\sqrt{5}-3>0;2\sqrt{5}-2>0\))

\(=2\sqrt{5}-3-2\sqrt{5}+2\\ =-1\)

\(M=\dfrac{8\left(\sqrt{5}+\sqrt{3}\right)}{2}-\dfrac{7\left(2+\sqrt{3}\right)}{4-3}+\dfrac{4\left(\sqrt{2}+1\right)}{2-1}+\dfrac{\sqrt{15}\left(\sqrt{3}-1\right)}{\sqrt{15}}\)

\(=4\left(\sqrt{5}+\sqrt{3}\right)-14-7\sqrt{3}+4\sqrt{2}+4+\sqrt{3}-1\)

\(=4\sqrt{5}+4\sqrt{3}-6\sqrt{3}+4\sqrt{2}-11\)

\(=4\sqrt{5}-2\sqrt{3}+4\sqrt{2}-11\)

6 tháng 9 2023

\(M=\dfrac{8\left(\sqrt{5}+\sqrt{3}\right)}{5-3}+\dfrac{7\left(\sqrt{3}+2\right)}{3-4}+\dfrac{4\left(\sqrt{2}+1\right)}{2-1}+\dfrac{\sqrt{15}\left(\sqrt{3}-1\right)}{\sqrt{15}}\)

\(=4\sqrt{5}+4\sqrt{3}-7\sqrt{3}-14+4\sqrt{2}+4+\sqrt{3}-1\)

\(=4\sqrt{5}-2\sqrt{3}+4\sqrt{2}-11\)

Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)

\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)

=1

1 tháng 10 2017

\(A=\sqrt{8-2\sqrt{15}}=\sqrt{5-2\sqrt{15}+3}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\)

\(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(\Leftrightarrow\sqrt{4-\sqrt{7}}B=\sqrt{4+\sqrt{7}}\sqrt{4-\sqrt{7}}-\sqrt{\left(4-\sqrt{7}\right)^2}\)

\(\Leftrightarrow\sqrt{4-\sqrt{7}}B=\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}-\left|4-\sqrt{7}\right|\)

\(\Leftrightarrow\sqrt{4-\sqrt{7}}B=\sqrt{16-7}-4+\sqrt{7}\)

\(\Leftrightarrow\sqrt{4-\sqrt{7}}B=3-4+\sqrt{7}=-1+\sqrt{7}\)

\(\Leftrightarrow B=\frac{-1+\sqrt{7}}{\sqrt{4-\sqrt{7}}}\)

tíck mình nha bn thanks !!!!!!!!!!

1 tháng 10 2017

cảm ơn b nhìu nha mik k giùm b rr đó