cho p y=x^2 VÀ (d) y=mx+1(m khác 0)
a cm d cắt p tại 2 điểm phân biệt Avà B
b H VÀ K lần lượt là hình chiếu của A B trên Ox gọi I là giao điểm của d với oy
CM tam giác IHK vuông tại I với mọi giá trị của m khác 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phương trình hoành độ giao điểm của (d) và (P) là \(x^2=mx+1\Leftrightarrow x^2-mx-1=0\). (*)
Do ac < 0 nên phương trình luôn có 2 nghiệm phân biệt.
Do đó (d) cắt (P) tại 2 điểm phân biệt.
b) Do I có hoành độ là 0 nên có tung độ là 1. Do đó \(I\left(0;1\right)\).
Dễ thấy \(OI\perp HK\) và OI = 1.
Gọi \(x_1,x_2\) lần lượt là hoành độ của H và K.
Khi đó \(x_1,x_2\) là nghiệm của phương trình (*).
Theo hệ thức Viét ta có \(x_1x_2=-1\).
Ta có \(OK.OH=\left|x_1\right|.\left|x_2\right|=\left|x_1x_2\right|=1=OI^2\) nên tam giác IKH vuông tại I. (đpcm)