Cho x > y > 0 So sánh A=(x-y)/(x+y) và B= (x2-y2)/(x2+y2)
Giúp Với ạ !!! Ai nhanh nhất sẽ được ấy ạ ... aaaa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
1)
Ta có: x+y=2
nên \(\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy=2\)
hay xy=1
Ta có: \(x^3+y^3\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=2^3-3\cdot1\cdot2\)
=2
2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)
\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)
\(=x^2y-x^2z+y^2\left(z-x\right)+xz^2-yz^2\\ =\left(x^2y-yz^2\right)-\left(x^2z-xz^2\right)-y^2\left(x-z\right)\\ =y\left(x-z\right)\left(x+z\right)-xz\left(x-z\right)-y^2\left(x-z\right)\\ =\left(x-z\right)\left(xy+yz-xz-y^2\right)\\ =\left(x-z\right)\left[x\left(y-z\right)+y\left(z-y\right)\right]\\ =\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
Theo đề bài ta có:
;
cân bằng phương trình bằng cách nhân x vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân y vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân z vào cả hai vế ta có:
vì
Vì Có cùng số mũ và bằng nhau
Nên các cơ số cũng bằng nhau
Ta có: \(x^2=y\cdot z\)
nên \(z=\dfrac{x^2}{y}\)(1)
Ta có: \(y^2=z\cdot x\)
nên \(z=\dfrac{y^2}{x}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)
\(\Leftrightarrow x^3=y^3\)
hay x=y(3)
Ta có: \(x^2=y\cdot z\)
nên \(y=\dfrac{x^2}{z}\)(4)
Ta có: \(z^2=x\cdot y\)
nên \(y=\dfrac{z^2}{x}\)(5)
Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)
\(\Leftrightarrow x^3=z^3\)
hay x=z(6)
Từ (3) và (6) suy ra x=y=z(đpcm)
\(x+y=9\Leftrightarrow x^2+2xy+y^2=81\Leftrightarrow x^2+y^2=81-2xy\\ x-y=5\Leftrightarrow x^2-2xy+y^2=25\Leftrightarrow x^2+y^2=25+2xy\\ \Leftrightarrow81-2xy=25+2xy\\ \Leftrightarrow4xy=56\Leftrightarrow2xy=28\\ \Leftrightarrow B=x^2+y^2=\left(x+y\right)^2-2xy=9^2-28=53\)
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
\(B=\frac{x^2-y^2}{\left(x^2+y^2\right)}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-2xy}\)(1)
Vì x > y > 0 '
\(\Rightarrow A=\frac{\left(x-y\right)}{\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)(2)
Mà x > y > 0
\(\Rightarrow\left(x+y\right)^2-2xy< \left(x+y\right)^2\)(3)
Từ (1) , (2) và (3) \(\Rightarrow\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-2xy}>\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)
Hay \(A< B\)