Cho hệ pt x+2y=-1và 2x-my =2
Tìm m để hệ pt có nghiệm duy nhất (x;y) thỏa mãn y=-x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m=2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=3\\x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=5+2y=5+2\cdot\left(-1\right)=3\end{matrix}\right.\)
Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là (x,y)=(3;-1)
khi m=2 ta có hệ pt:
\(\left\{{}\begin{matrix}x+2y=2+1\\2x+y=2.2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=2\\x+2y=3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=\dfrac{2}{3}\\2x+\dfrac{2}{3}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{3}\\2x=\dfrac{7}{3}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=\dfrac{2}{3}\\x=\dfrac{5}{3}\end{matrix}\right.\)
vậy khi m=2 thì hệ pt có nghiệm duy nhất\(\left\{\dfrac{2}{3};\dfrac{5}{3}\right\}\)
a) Thay m=2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y=2\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{3}\\x=3-2y=3-2\cdot\dfrac{2}{3}=\dfrac{5}{3}\end{matrix}\right.\)
Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{5}{3};\dfrac{2}{3}\right)\)
Thay m=2 vào HPT ta có:
\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiemj (x;y) = (3;-11)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m+1}{m^2}\ne\dfrac{-2}{-1}=2\)
=>\(2m^2\ne m+1\)
=>\(2m^2-m-1\ne0\)
=>\(\left(m-1\right)\left(2m+1\right)\ne0\)
=>\(m\notin\left\{1;-\dfrac{1}{2}\right\}\)
\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\2m^2\cdot x-2y=2m^2+4m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(2m^2-m-1\right)=2m^2+4m-m+1\\\left(m+1\right)x-2y=m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\cdot\left(m-1\right)\left(2m+1\right)=2m^2+3m+1=\left(m+1\right)\left(2m+1\right)\\\left(m+1\right)x-2y=m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m-1}\\2y=\left(m+1\right)x-\left(m-1\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m-1}\\2y=\dfrac{m^2+2m+1-\left(m-1\right)^2}{m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m-1}\\y=\dfrac{m^2+2m+1-m^2+2m-1}{2m-2}=\dfrac{4m}{2m-2}=\dfrac{2m}{m-1}\end{matrix}\right.\)
Để x,y đều nguyên thì \(\left\{{}\begin{matrix}m+1⋮m-1\\2m⋮m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m-1+2⋮m-1\\2m-2+2⋮m-1\end{matrix}\right.\)
=>\(2⋮m-1\)
=>\(m-1\in\left\{1;-1;2;-2\right\}\)
=>\(m\in\left\{2;0;3;-1\right\}\)
\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\2m^2x-2y=2m^2+4m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m^2-m-1\right)x=2m^2+3m+1\\y=m^2x-m^2-2m\end{matrix}\right.\)
Pt có nghiệm duy nhất khi \(2m^2-m-1\ne0\Rightarrow m\ne\left\{1;-\dfrac{1}{2}\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{2m^2-2m-1}{2m^2+3m+1}=\dfrac{\left(m-1\right)\left(2m+1\right)}{\left(m+1\right)\left(2m+1\right)}=\dfrac{m-1}{m+1}\\y=m^2x-m^2-2m=\dfrac{-4m^2-2m}{m+1}\end{matrix}\right.\)
Để x nguyên \(\Rightarrow\dfrac{m-1}{m+1}\in Z\Rightarrow1-\dfrac{2}{m+1}\in Z\)
\(\Rightarrow\dfrac{2}{m+1}\in Z\)
\(\Rightarrow m+1=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow m=\left\{-3;-2;0;1\right\}\)
Thay vào y thấy đều thỏa mãn y nguyên.
Vậy ...
a: x+my=1 và -mx+y=m
Khi m=2 thì x+2y=1 và -2x+y=2
=>x=-3/5; y=4/5
b: 1/-m<>m/1
nên hệ luôn có nghiệm duy nhất
c: x+my=1 và -mx+y=m
=>x=1-my và -m(1-my)+y=m
=>x=1-my và -m+m^2y+y=m
=>x=1-my và y(m^2+1)=-2m
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-2m}{m^2+1}\\x=1-\dfrac{-2m^2}{m^2+1}=\dfrac{m^2+1+2m^2}{m^2+1}=\dfrac{3m^2+1}{m^2+1}\end{matrix}\right.\)
x<1; y<1
=>\(\left\{{}\begin{matrix}\dfrac{-2m}{m^2+1}-1< 0\\\dfrac{3m^2+1-m^2-1}{m^2+1}< 0\end{matrix}\right.\)
=>-2m-m^2-1<0 và 2m^2<0
=>\(m\in\varnothing\)
\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2mx-my=m^2+5m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\\left(m+1\right)x=m^2+2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\\left(m+1\right)x=\left(m+1\right)^2\end{matrix}\right.\)
Pt có nghiệm duy nhất \(\Leftrightarrow m\ne-1\)
Khi đó: \(\left\{{}\begin{matrix}x=m+1\\y=m-3\end{matrix}\right.\)
\(x^2-y^2=4\Leftrightarrow\left(m+1\right)^2-\left(m-3\right)^2=4\)
\(\Leftrightarrow8m=12\Rightarrow m=\dfrac{3}{2}\)
a) Thay m=3 vào hpt \(\hept{\begin{cases}x+y=1\\3x+2y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\3x+2-2x=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)
Vậy m=3 thì hpt có nghiệm duy nhất (x,y)=(1;0)
b)Ta có \(\hept{\begin{cases}x=1-y\\m-my+2y=m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-y\left(1\right)\\\left(2-m\right)y=0\left(2\right)\end{cases}}\)
Để hpt có nghiệm duy nhất \(\Leftrightarrow pt\left(2\right)\ne0\Leftrightarrow2-m\ne0\Leftrightarrow m\ne2\)
Khi đó \(\left(2\right)\Leftrightarrow y=0\).Thay vào \(\left(1\right)\Leftrightarrow x=1\)
Để hpt có vô số nghiệm \(\Leftrightarrow2-m=0\Leftrightarrow m=2\)
Vậy m\(\ne\)2 thì hpt có nghiệm duy nhất (x;y)=(1;0)
m=2 thì hpt có vô số nghiệm