K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

Ta có : \(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng vào bài toán có :

\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)

Áp dụng BĐT Svacxo ta có :

\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)\(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\)\(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)

Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)

P/s : Dấu "=" không chắc lắm :))

7 tháng 3 2020

thanks bạn mình hiểu sương sương rồi:))

25 tháng 9 2021

1)

a) \(=3x^2\left(x^2-1\right)-\left(x^3-1\right)+x^8-3x^4+3x^2-1\)

\(=3x^4-3x^2-x^3+1+x^8-3x^4+3x^2-1=x^8-x^3\)

2) 

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-6\left(x^2+5x\right)+45\)

\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)-36+45\)

\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)+9=\left(x^2+5x-3\right)^2\)

11 tháng 11 2021

a: \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}B=\dfrac{-3}{3-1}=\dfrac{-3}{2}\\B=\dfrac{1}{-1-1}=-\dfrac{1}{2}\end{matrix}\right.\)

3 tháng 12 2021

\(x^2+y^2+z^2+4xyz=2\left(xy+yz+zx\right)\\ \Leftrightarrow\left(x-y-z\right)^2=\left(1-x\right)4yz\ge0\\ \Leftrightarrow1-x\ge0\Leftrightarrow0< x\le1\\ \Leftrightarrow\left(x-y-z\right)^2=\left(1-x\right)4yz\le\left(1-x\right)\left(y+z\right)^2\\ \Leftrightarrow x^2-2x\left(y+z\right)+\left(y+z\right)^2\le\left(1-x\right)\left(y+z\right)^2\\ \Leftrightarrow x^2-2x\left(y+z\right)\le\left(y+z\right)^2\left(1-x-1\right)=-x\left(y+z\right)^2\\ \Leftrightarrow x-2\left(y+z\right)\le-\left(y+z\right)^2\\ \Leftrightarrow x\le\left(y+z\right)\left[2-\left(y+z\right)\right]\)

Đặt \(2-\left(y+z\right)=t\)

\(P=x\left(1-y\right)\left(1-z\right)\le x\left(\dfrac{1-y+1-z}{2}\right)^2=\dfrac{x\left[2-\left(y+z\right)\right]^2}{4}\\ \Leftrightarrow4P\le x\left[2-\left(y+z\right)\right]^2\le\left(y+z\right)\left[2-\left(y+z\right)\right]^3\\ \Leftrightarrow4P\le t^3\left(2-t\right)=\dfrac{27}{16}-\dfrac{\left(4t^2+4t+3\right)\left(2t-3\right)^2}{16}\)

Mà \(-\dfrac{\left(4t^2+4t+3\right)\left(2t-3\right)^2}{16}\le0\Leftrightarrow4P\le\dfrac{27}{16}\Leftrightarrow P\le\dfrac{27}{64}\)

Dấu \("="\Leftrightarrow x=\dfrac{3}{4};y=z=\dfrac{1}{4}\)