CMR:
Hiệu của một số có 6 chữ số vs số ngược lại của nó luôn chia hết cho 9. Tổng quát hóa bài toán và chứng minh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số có 2 chữ số là ab (a khác 0; a,b là số tự nhiên)
ab+ba=10a+b+10b+a=(10a+a)+(10b+b)=11a+11b=11(a+b) chia hết cho 11 (ĐPCM)
Gọi 2 số tự nhiên mà đề bài cho là ab và ba ta co: ab + ba = (a0 + b) + (b0 +a) =(a0 +a ) + (b0+b) = aa + bb chia het cho 11 vay ab + ba chia het cho 11 => tong cua 1 so tu nhien co 2 chu so voi so viet theo thu tu nguoc lai luon chia het cho 11
c, Ta có ab+ba = 10a + 10b + a + b=11a + 11b
Vậy ab+ba chia hết cho 11
gọi 2 số chẵn tự nhiên liên tiếp là a,a+2
nếu a chia hết cho 4 thì bài toán dc giải
a=4k+2 thì 4+2=4k+4 chia hết cho 4
gọi n là tn số chẵn thì
nếu \(n:4\)dư 2 thì n +2 chia hết cho 4
còn n+2 chia 4 dư 2 thì n chia hết cho 4
abcdef - fedcba chia hết cho 9
Chứng minh giúp mk với! bn ơi