Cho a, b la binh phuong cua 2 so nguyen le lien tiep. Chung minh rang: ab - a - b + 1 chia het cho 48
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2A = 2.1.3.5.....2011
Dễ thấy 2A chia hết cho 2 mà không chia hết cho 4
=> 2A không là bình phương của 1 số nguyên nào
VÌ 2A là chẵn => 2A - 1 lẻ, mà 2A- 1 ko chia hết cho 3, 5, 7,...,2011
( vì 2A chia hết cho các số đó)
Tương tự vậy ta thấy ngay 2A-1, 2A không là bình phương cảu bất kì số nguyên nào
a) Có dạng: 2k + 2k + 2 + 2k + 4 = 6k + 6 = 6(k+1)
chia hết cho 6 (dpcm)
b) Có dạng: 2k + 1 + 2k + 3 + 2k + 5 = 6k + 9 = 2(3k + 4) + 1
không chia hết cho 6 (dpcm)
1)
gọi ba số tự nhiên liên tiếp là a;a+1;a+2
ta có :
a+(a+1)+(a+2)=3.a+3=3.(a+1) chia hết cho 3
=>dpcm
2) gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2a;a+3;a+4
ta có :a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5a+2.5=5(a+2) chia hết cho 5
=>dpcm
b)goi 3 số tự nhiên la a, a+1, a+2
tổng 3 số la 3a+3 chia hết cho 3
a)Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
a. goi ba so tu nhien chan do la a nhan 2, a nhan 2 +2,a nhan 2 +4
theo bai ra ta co : tong ba so chan lien tiep la : a*2+a*2+2+a*2+4 = ( a*2+a*2+a*2) + (2+4)= a*6+6=6*(a+1)
vi 6 chia het cho 6 nen 6*(a+1)chia het cho 6
Goi ba so chan lien tiep la \(a;a+2;a+4\)
\(\Rightarrow a+a+2+a+4=3a+6\)
Vì a là số chẵn nên a chia hết cho 2 \(\Rightarrow3a⋮6\)
\(\Rightarrow3a+6⋮6\)
Vậy tổng ba số chẵn liên tiêp chia hết cho 6
Số chẵn có dạng: 2n
Tổng của 5 số chẵn liên tiếp là:
S = 2n + 2n + 2 + 2n + 4 + 2n + 6 + 2n + 8 = 10n + 20
S = 10.(n +2)⋮ 10(đpcm)
Số lẻ có dạng: 2n + 1
5 số lẻ liên tiếp có dạng:
S = 2n + 1 + 2n + 3 + 2n + 5 + 2n + 7 + 2n + 9
S = 10n + 15
S = 10.(n + 1) + 5
⇒ S ⋮ 10 dư 5 (đpcm)
Đặt \(A=ab-a-b+1=\left(ab-a\right)-\left(b-1\right)=a\left(b-1\right)-\left(b-1\right)=\left(a-1\right)\left(b-1\right)\)
Mà a,b là bình phương hai số lẻ liên tiếp nên
\(\Rightarrow\hept{\begin{cases}a=\left(2k-1\right)^2\\b=\left(2k+1\right)^2\end{cases}}\)
\(\Rightarrow A=\left[\left(2k-1\right)^2-1\right]\left[\left(2k+1\right)^2-1\right]\)
\(\Rightarrow A=\left(4k^2-4k\right)\left(4k^2+4k\right)\)
\(\Rightarrow A=16k^4-16k^2\)
\(\Rightarrow A=16k^2\left(k^2-1\right)\)
\(\Rightarrow A=16k\left(k-1\right)k\left(k+1\right)\)
Ta thấy: \(A⋮16\)
Mà \(\left(k-1\right)k\left(k+1\right)\)là tích của ba số liên tiếp
\(\Rightarrow A⋮3\)
Vậy \(A⋮48\left(48=16.3\right)\)
Hay \(\left(ab-a-b+1\right)⋮48\)