K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2019

Đặt \(A=ab-a-b+1=\left(ab-a\right)-\left(b-1\right)=a\left(b-1\right)-\left(b-1\right)=\left(a-1\right)\left(b-1\right)\)

Mà a,b là bình phương hai số lẻ liên tiếp nên

\(\Rightarrow\hept{\begin{cases}a=\left(2k-1\right)^2\\b=\left(2k+1\right)^2\end{cases}}\)

\(\Rightarrow A=\left[\left(2k-1\right)^2-1\right]\left[\left(2k+1\right)^2-1\right]\)

\(\Rightarrow A=\left(4k^2-4k\right)\left(4k^2+4k\right)\)

\(\Rightarrow A=16k^4-16k^2\)

\(\Rightarrow A=16k^2\left(k^2-1\right)\)

\(\Rightarrow A=16k\left(k-1\right)k\left(k+1\right)\)

Ta thấy:  \(A⋮16\)

Mà \(\left(k-1\right)k\left(k+1\right)\)là tích của ba số liên tiếp

\(\Rightarrow A⋮3\)

Vậy \(A⋮48\left(48=16.3\right)\)

Hay \(\left(ab-a-b+1\right)⋮48\)

12 tháng 5 2019

Vì 2A = 2.1.3.5.....2011

Dễ thấy 2A chia hết cho 2 mà không chia hết cho 4

=> 2A không là bình phương của 1 số nguyên nào

VÌ 2A là chẵn => 2A - 1 lẻ, mà 2A- 1 ko chia hết cho 3, 5, 7,...,2011

( vì 2A chia hết cho các số đó)

Tương tự vậy ta thấy ngay 2A-1, 2A không là bình phương cảu bất kì số nguyên nào

9 tháng 11 2015

a) Có dạng: 2k + 2k + 2 + 2k + 4 = 6k + 6 = 6(k+1)

chia hết cho 6 (dpcm)

b) Có dạng: 2k + 1 + 2k + 3 + 2k + 5 = 6k + 9 = 2(3k + 4) + 1

không chia hết cho 6 (dpcm) 

9 tháng 11 2015

Bênh vực người yêu quá cơ Anh yêu em Choco pie

20 tháng 11 2015

1)

gọi ba số tự nhiên liên tiếp là a;a+1;a+2

ta có :

a+(a+1)+(a+2)=3.a+3=3.(a+1) chia hết cho 3

=>dpcm

2) gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2a;a+3;a+4

ta có :a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5a+2.5=5(a+2) chia hết cho 5

=>dpcm

20 tháng 11 2015

Câu hỏi tương tự.

 

16 tháng 7 2016

b)goi 3 số tự nhiên la a, a+1, a+2 
tổng 3 số la 3a+3 chia hết cho 3

a)Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 

17 tháng 7 2016

Ban co chac chan dung ko vay

15 tháng 10 2017

a. goi ba so tu nhien chan do la a nhan 2, a nhan 2 +2,a nhan 2 +4

theo bai ra ta co : tong ba so chan lien tiep la : a*2+a*2+2+a*2+4 = ( a*2+a*2+a*2) + (2+4)= a*6+6=6*(a+1)

vi 6 chia het cho 6 nen 6*(a+1)chia het cho 6

15 tháng 10 2017

cac phan con lai tuong tu

15 tháng 11 2017

you  can call it a a+1 a+2 

sorry wait for me thanks

6 tháng 7 2019

Goi ba so chan lien tiep la  \(a;a+2;a+4\)

\(\Rightarrow a+a+2+a+4=3a+6\)

Vì a là số chẵn nên a chia hết cho 2 \(\Rightarrow3a⋮6\)

\(\Rightarrow3a+6⋮6\)

Vậy tổng ba số chẵn liên tiêp chia hết cho 6

19 tháng 3

Số chẵn có dạng: 2n

Tổng của 5 số chẵn liên tiếp là:

S = 2n + 2n + 2 + 2n + 4 + 2n + 6 + 2n + 8 = 10n + 20

S = 10.(n +2)⋮ 10(đpcm)

 

19 tháng 3

Số lẻ có dạng: 2n + 1

5 số lẻ liên tiếp có dạng:

S = 2n + 1 + 2n + 3 + 2n + 5 + 2n + 7 + 2n + 9

S = 10n + 15 

S = 10.(n + 1) + 5 

⇒ S ⋮ 10 dư 5 (đpcm)