Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{10}=\frac{y}{15}\\\frac{z}{4}=\frac{y}{5}\Leftrightarrow\frac{z}{12}=\frac{y}{15}\end{cases}\Leftrightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12};x+y-z=-39}\)
Tính chất dãy tỉ số bằng nhau:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x+y-z}{10+15-12}=-\frac{39}{13}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=-3\Leftrightarrow x=-30\\\frac{y}{15}=-3\Leftrightarrow y=-45\\\frac{z}{12}=-3\Leftrightarrow z=-36\end{cases}}\)
\(x+y\le2\Rightarrow-\left(x+y\right)\ge-2\)
Do đó:
\(A=2\left(x+\dfrac{1}{x}\right)+2\left(y+\dfrac{1}{y}\right)-\left(x+y\right)\ge2.2\sqrt{x.\dfrac{1}{x}}+2.2\sqrt{y.\dfrac{1}{y}}-2=6\)
\(A_{min}=6\) khi \(x=y=1\)
\(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow x^2-xy+y+2=0\)
\(\Leftrightarrow x\left(x-1\right)-y\left(x-1\right)+\left(x-1\right)+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-y+1\right)=-3\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=-1\\x-y+1=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=3\\x-y+1=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=1\\x-y+1=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-3\\x-y+1=1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(0;-2\right),\left(4;6\right),\left(2;6\right),\left(-2;-2\right)\right\}\)
Ta có \(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow y\left(x-1\right)-x^2=2\)
\(\Leftrightarrow y\left(x-1\right)-x^2+1=3\)
\(\Leftrightarrow y\left(x-1\right)-\left(x^2-1\right)=3\)
\(\Leftrightarrow y\left(x-1\right)-\left(x-1\right)\left(x+1\right)=3\)
\(\Leftrightarrow\left(x-1\right)\left(y-x-1\right)=3\)
Vì x,y nguyên nên ta có bảng
x-1 | 3 | 1 | -1 | -3 |
y-x-1 | 1 | 3 | -3 | -1 |
x | 4 | 2 | 0 | -2 |
y | 6 | 8 | 2 | 4 |
Vậy\(\left(x,y\right)=\left\{\left(4,6\right),\left(2,8\right),\left(0,2\right),\left(-2,4\right)\right\}\)thỏa mãn
Dễ:C
Vì a:b:c=2:3:4
=> Đặt a=2t, b=3t, c=4t
Gọi diện tích tam giác đó là S.
Ta có: \(S=\dfrac{a.x}{2}=\dfrac{b.y}{2}=\dfrac{c.z}{2}\)
<=> \(2S=ax=by=cz\)
<=>2t.x=3t.y=4t.z
<=>2x=3y=4z
<=>\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)
Vậy..
= trung quốc 3 - 2 việt nam
Ta có: \(\frac{x}{y}=3\Rightarrow x=3y\Rightarrow\frac{x}{3}=\frac{y}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{1}=\frac{x+y}{3+1}=\frac{2}{4}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}.3=\frac{3}{2}\\y=\frac{1}{2}.1=\frac{1}{2}\end{cases}}\)