Tìm m để f(x)=\(\frac{1}{2-\sqrt{\text{x}^2+\left(4m-6\right)\text{x}+m^2-5m+9}}\) có TXĐ là R.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để y = f(x) có TXĐ: D = R
điều kiện là: \(-x^2+4\left(m+1\right)x+1-4m^2\ne0\) với mọi số thực x
<=> \(-x^2+4\left(m+1\right)x+1-4m^2=0\) vô nghiệm với mọi số thực x
<=> \(\Delta'< 0\)
<=> 4 (m+1 )2 - 4m^2 < 0
<=> 2m + 1 < 0
<=> m < -1/2
Vậy : ...
b) Để y = f(x) có TXĐ: D = R
điều kiện là:
\(\frac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\ge0\) với mọi số thực x (1)
Lại có: \(-4x^2+5x-2< 0\) với mọi số thực x ( Tự chứng minh )
Do đó: (1) <=> \(-x^2+4\left(m+1\right)x+1-4m^2\le0\) với mọi số thực x
<=> \(\Delta'\le0\)
<=> \(m\le-\frac{1}{2}\)
Vậy: ...
Bài 1:
\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)
\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)
\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)
\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)
\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)
\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)
\(\Rightarrow C=\sqrt{14}\)
\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)
\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)
Bài 2:
a) Bạn xem lại đề.
b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)
c)
\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)
\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)
a.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)
\(\Leftrightarrow-5m-4< 0\)
\(\Leftrightarrow m>-\dfrac{4}{5}\)
b.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)
\(\Leftrightarrow-3m+7\le0\)
\(\Rightarrow m\ge\dfrac{7}{3}\)
c.
\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)
\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)
\(y\) có TXĐ là \(\mathbb{R}\) \(\Leftrightarrow (mx+3)(x-2) ≥0\)
TH1: \(\left[ \begin{array}{l}mx+3\\x-2=0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x=\dfrac{-3}{m} (m\ne0)\\x=2\end{array} \right.\)
TH2: \(\begin{cases}mx+3>0\\x-2>0\\\end{cases} \Leftrightarrow \begin{cases}x > \dfrac{-3}{m} \\x>2\\\end{cases} \)
TH3: \(\begin{cases}mx+3<0\\x-2<0\\\end{cases} \Leftrightarrow \begin{cases}x < \dfrac{-3}{m}\\x<2\\\end{cases} \)
Vậy...
a, m2x - 1 < mx + m
⇔ (m2 - m)x < m + 1
Bất phương trình vô nghiệm khi
\(\left\{{}\begin{matrix}m^2-m=0\\m+1\le0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Vậy phương trình có nghiệm với ∀m ∈ R
b, (m2 + 9)x + 3 ≥ m - 6mx
⇔ (m2 + 6m + 9)x ≥ m + 3
Phương trình có nghiệm đúng với ∀x khi m = -3
c, 8m2x - 4m2 ≥ 4m2x + 5mx + 9x - 12
⇔ 4m2x - 5mx - 9x ≥ 4m2 - 12
⇔ (4m2 - 5m - 9)x ≥ 4m2 - 12
Bất phương trình có nghiệm đúng với ∀x khi m = -1
a/ Với x ∈ [0;1] thì
\(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)
\(+m-1=0\Leftrightarrow m=1\text{ thì }f\left(x\right)=-10\Leftrightarrow m>1\text{ thì }2\left(m-1\right).0-m\le2\left(m-1\right)x-m\le2\left(m-1\right).1-m\)
\(\Rightarrow f\left(x\right)\le m-2\text{ với mọi }x\in\left[0;1\right]\)
Để f(x) < 0 thì m - 2 < 0 <=> m < 2.
Vậy 1 < m < 2.
\(+m-11\)
Giải bất phương trình trên để được \(\frac{4}{3}
Để hàm số có TXĐ là R thì \(g\left(x\right)=x^2+2\left(2m-3\right)x+m^2-5m+9\ge0\) \(\forall x\)
và \(g\left(x\right)\ne4\)
\(\Delta'=\left(2m-3\right)^2-\left(m^2-5m+9\right)=3m^2-7m\le0\)
\(\Rightarrow0\le m\le\frac{7}{3}\) (1)
Xét \(g\left(x\right)=4\Leftrightarrow x^2+2\left(2m-3\right)x+m^2-5m+5=0\)
Để pt vô nghiệm
\(\Leftrightarrow\Delta'=\left(2m-3\right)^2-\left(m^2-5m+5\right)< 0\)
\(\Leftrightarrow3m^2-7m+4< 0\Rightarrow1< m< \frac{4}{3}\) (2)
Kết hợp (1) và (2) ta được \(1< m< \frac{4}{3}\)
cảm ơn ạ