cho a và b là hai số dương thỏa mãn điều kiện: ab+4 bé hơn hoặc bằng 2b.
Tìm GTLN của biểu thức: P=\(\frac{ab}{a^2+2b^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Theo giả thiết nên áp dụng bất đẳng thức Cô si ta được
, (đẳng thức xảy ra khi và chỉ khi )
- Tương tự , (đẳng thức xảy ra khi và chỉ khi )
- Từ đó
- Giả thiết tương đương với (*)
- Do đó
- Mà nên (do giả thiết ).
- Vì vậy
GTNN là đạt khi và chỉ khi
Áp dụng BĐT AM-GM ta có:
\(a^4+b^2+2ab^2\ge2\sqrt{a^4b^2}+2ab^2=2a^2b+2ab^2\)
\(b^4+a^2+2a^2b\ge2\sqrt{a^2b^4}+2a^2b=2ab^2+2a^2b\)
\(\Rightarrow Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\)
Lại có: \(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\)
\(\Leftrightarrow a^2+2ab-a+b^2-b=a^2+b^2\)
\(\Leftrightarrow2ab=a+b\ge2\sqrt{ab}\)\(\Rightarrow\left\{{}\begin{matrix}ab\ge1\\a+b\ge2\sqrt{ab}\ge2\end{matrix}\right.\)
Khi đó \(Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)
Đẳng thức xảy ra khi \(a=b=1\)
Ta có: \(\sqrt{2a+bc}=\sqrt{a^2+ab+ac+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\le\frac{a+b+a+c}{2}\)
C/m tương tự \(\sqrt{2b+ac}\le\frac{b+a+b+c}{2}\)
\(\sqrt{2c+ab}\le\frac{c+a+c+b}{2}\)
\(\Rightarrow Q\le\frac{a+b+a+c+b+a+b+c+c+a+c+b}{2}=\frac{4\left(a+b+c\right)}{2}=4\)
Dấu "=" khi a = b = c = 2/3
Cho a,b,c là các số thực dương:
Chứng minh rằng: a2+b2+c2+2abc+1≥2(ab+bc+ca)a2+b2+c2+2abc+1≥2(ab+bc+ca)
Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bb và cc.
Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a
Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1
Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)
⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)
Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.
Theo đề ra, ta có:
\(a^2+b^2+c^2\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
Theo BĐT Cô-si:
\(\left\{{}\begin{matrix}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)
Do vậy \(M\ge14\left(a^2+b^2+c^2\right)+\dfrac{3\left(ab+bc+ac\right)}{a^2+b^2+c^2}\)
Ta đặt \(a^2+b^2+c^2=k\)
Luôn có \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)
Vì thế nên \(k\ge\dfrac{1}{3}\)
Khi đấy:
\(M\ge14k+\dfrac{3\left(1-k\right)}{2k}=\dfrac{k}{2}+\dfrac{27k}{2}+\dfrac{3}{2k}-\dfrac{3}{2}\ge\dfrac{1}{3}.\dfrac{1}{2}+2\sqrt{\dfrac{27k}{2}.\dfrac{3}{2k}}-\dfrac{3}{2}=\dfrac{23}{3}\)
\(\Rightarrow Min_M=\dfrac{23}{3}\Leftrightarrow a=b=c=\dfrac{1}{3}\).
\(\sqrt{c+ab}\) =\(\sqrt{c\left(a+b+c\right)+ab}=\sqrt{c^2+ac+cb+ab}=\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\frac{ab}{\sqrt{c+ab}}\le\frac{ab}{2}\left(\frac{1}{c+a}+\frac{1}{b+c}\right)\)
ttu \(\frac{bc}{\sqrt{a+bc}}\le\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right);\frac{ac}{\sqrt{b+ca}}\le\frac{1}{2}\left(\frac{1}{b+a}+\frac{1}{a+c}\right)\)
\(\Rightarrow P\le\frac{bc+ac}{2\left(a+b\right)}+\frac{ac+ab}{2\left(a+b\right)}+\frac{bc+ab}{2\left(c+b\right)}=\frac{1}{2}\left(a+b+c\right)=\frac{1}{2}\)
dau = xay ra khi a=b=c=1/3
a.
Ta có: \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{3}.2^2=2\) (đpcm)
Dấu "=" xảy ra khi \(a=b=1\)
b.
\(a^4+b^4\ge\dfrac{1}{2}\left(a^2+b^2\right)^2\ge\dfrac{1}{2}.2^2=2\) (sử dụng kết quả \(a^2+b^2\ge2\) của câu a)
Dấu "=" xảy ra khi \(a=b=1\)
c.
\(a^2b^2\left(a^2+b^2\right)=\dfrac{1}{2}ab.2ab\left(a^2+b^2\right)\le\dfrac{1}{8}\left(a+b\right)^2\left(2ab+a^2+b^2\right)^2=2\)
d.
\(8\left(a^4+b^4\right)+\dfrac{1}{ab}\ge8.2+\dfrac{4}{\left(a+b\right)^2}=16+\dfrac{4}{2^2}=17\) (sử dụng kết quả câu b)