Tìm n thỏa mãn
\(\frac{2n+1}{n-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dự đoán dấu "=" khi \(m=n=\frac{1}{\sqrt{2}}\text{ hoặc }=-\frac{1}{\sqrt{2}}\)
Nhận thấy dù m, n âm hay dương trong 2 trường hợp trên thì giá trị P vẫn không đổi.
Ta áp dụng Côsi như sau:
\(\frac{m^2n^2}{m^2+n^2}+k\frac{m^2+n^2}{m^2n^2}+\left(1-k\right)\frac{m^2+m^2}{m^2n^2}\ge2\sqrt{\frac{m^2n^2}{m^2+n^2}.k\frac{m^2+n^2}{m^2.n^2}}+\left(1-k\right)\frac{2mn}{m^2n^2}\)\(\text{(}0<\)\(k<\)\(1\text{)}\)
\(=2\sqrt{k}+\left(1-k\right).\frac{2}{\frac{1}{2}}\)
Dấu "=" xảy ra khi \(m=n\text{ và }\frac{m^2n^2}{m^2+n^2}=k\frac{m^2+n^2}{m^2n^2}\)
Theo dự đoán, suy ra: \(\frac{\left(\frac{1}{2}\right)^2}{\frac{1}{2}+\frac{1}{2}}=k.\frac{\frac{1}{2}+\frac{1}{2}}{\left(\frac{1}{2}\right)^2}\Rightarrow k=\frac{1}{16}\)
~~~>> Trình bày ......................
xét \(VT=\frac{2}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+......+\frac{1}{2n.\left(2n+2\right)}\right)\) (1)
\(=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+.......+\frac{2}{2n\left(2n+2\right)}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.......+\frac{1}{2n}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{1}{4}-\frac{1}{2\left(2n+2\right)}\)
\(=\frac{1}{4}-\frac{1}{4n+4}\)
mà theo bài ra (1) = \(\frac{502}{2009}\)
<=>\(\frac{1}{4}-\frac{1}{4n+4}=\frac{502}{2009}\)
<=>\(\frac{1}{4n+4}=\frac{1}{4}-\frac{502}{2009}\)
<=>\(\frac{1}{4n+4}=\frac{1}{8036}\)
<=> 4n+4=8036
<=> 4n=8032
<=> n=2008
=) \(\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2n\left(2n+2\right)}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}-\frac{1}{2n+2}=\frac{502}{2009}:\frac{1}{2}=\frac{1018}{2009}\)
=) \(\frac{1}{2n+2}=\frac{1}{2}-\frac{1018}{2009}=\frac{-27}{4018}\)
=) \(\frac{-1}{-\left(2n+2\right)}=\frac{-27}{4018}\)
=) \(\frac{-27}{27.-\left(2n+2\right)}=\frac{-27}{4018}\)
=) \(27.-\left(2n+2\right)=4018\)
=) \(-\left(2n+2\right)=4018:27=\frac{4018}{27}\)
=) \(2n+2=\frac{-4018}{27}\)
=) \(2n=\frac{-4018}{27}-2=\frac{-4072}{27}\)
=) \(n=\frac{-4072}{27}:2=\frac{-2036}{27}\)
\(\)
Ta có : \(C^k_{2n+1}=C^{2n+1-k}_{2n+1}\)
\(\Rightarrow2VT=C^1_{2n+1}+C^2_{2n+1}+...+C^{2n}_{2n+1}=2^{21}-2\)
\(\Leftrightarrow2^{2n+1}-C^0_{2n+1}-C^{2n+1}_{2n+1}=2^{21}-2\)
\(\Leftrightarrow2n+1=21\Leftrightarrow n=10\)
\(\sum\limits^{2n+1}_{k=0}C^k_{2n+1}=\left(1+1\right)^{2n+1}=2^{2n+1}\)
Lại có \(C^0_{2n+1}+C^1_{2n+1}+...+C^n_{2n+1}=C^{2n+1}_{2n+1}+C^{2n}_{2n+1}+...+C^{n+1}_{2n+1}\)
\(\Rightarrow C^0_{2n+1}+C^1_{2n+1}+...C^n_{2n+1}=\dfrac{2^{2n+1}}{2}\)
\(\Leftrightarrow2^{20}-1=2^{2n}-C^0_{2n+1}\)
\(\Leftrightarrow2^{20}-1=2^{2n}-1\)
\(\Leftrightarrow2n=20\)
\(\Leftrightarrow n=10\)
2n+1:n-2
suy ra n+n-2+3:n-2
n+3:n-2
n-2+5:n-2
5:n-2
":" là dấu chia hết nha :3 típ nè
suy ra n-2 thuộc Ư(5)= (ngoặc vuông) 1;5 (ngoặc vuông)
TH1: n-2 =1
n=2+1
n=3
TH2: n-2=5
n=5+2
n=7
suy ra n thuộc (ngoặc vuông) 2,7 (ngoặc vuông)
Xong rùi nè
nhớ chọn câu trả lời của mk nha :Đ TYM TYM =))
Đảm bảo đúng 100% (9,3 đ giữa kì ó)
\(\left(2n+1\right)⋮\left(n-2\right)\Leftrightarrow\left[2\left(n-2\right)+5\right]⋮\left(n-2\right)\Leftrightarrow5⋮\left(n-2\right)\)
\(\Leftrightarrow n-2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\Leftrightarrow n\in\left\{-3,1,3,7\right\}\).
Ta có \(\hept{\begin{cases}2n+1⋮n-2\\n-2⋮n-2\end{cases}\Rightarrow\hept{\begin{cases}2n+1⋮n-2\\2n-4⋮n-2\end{cases}}}\)
\(\Rightarrow2n+1-2n+4⋮n-2\)
\(\Rightarrow5⋮n-2\)
\(\Rightarrow n-2\in\left\{1;5\right\}\)
\(\Rightarrow n\in\left\{3;7\right\}\)
Ta có: 2n+1\(⋮\)n-2
\(\Rightarrow\)2n-4+5\(⋮\)n-2
\(\Rightarrow\)2(n-2)+5\(⋮\)n-2
Mà 2(n-2)\(⋮\)n-2 (\(\forall\)n\(\in\)Z)
Nên 5\(⋮\)n-2
n-2\(\in\)Ư(5)=\([\)-1;1;5;-5\(]\)(dấu ngoặc sai nhé)
n\(\in\)\([\)1;3;7;-3\(]\)
2n + 1 \(⋮\)n - 2
\(\Leftrightarrow\)2(n - 2) + 4 + 1 \(⋮\)n - 2
\(\Leftrightarrow\)5 \(⋮\)n - 2
\(\Leftrightarrow\)n - 2 \(\in\)Ư(5) = {\(\pm\)1 ; \(\pm\)5}
\(\Leftrightarrow\)n \(\in\){3 ; 1 ; - 3 ; 7}
bn xem có thiếu đề hay không nhé
Để n thỏa mãn thì \(2n+1⋮n-2\)
\(\Rightarrow2n-4+5⋮n-2\)
Mà \(2n-4⋮n-2\)
\(\Rightarrow5⋮n-2\)
\(\Rightarrow n-2\inƯ\left(5\right)\)
\(\Rightarrow n-2\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{1;3;-3;7\right\}\)