Tìm các số n thỏa mãn
\(\frac{n^2}{60-n}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)
Vì m là số nguyên nên \(\frac{n^2+n+1}{n+1}\)
nguyên
=> 1 chia hết cho (n+1)
=> \(n+1\in\left\{1,-1\right\}=>n\in\left\{0,-2\right\}\)
Với n = 0 thì: \(m=\frac{0+0+1}{0+1}=1\)
Với n = -2 thì: \(m=\frac{4-2+1}{-2+1}=-3\)
Vậy, các cặp (m;n) thảo mãn là: (0;1),(-2;-3)
Nếu đúng nhớ tk nhé
=> \(\frac{m}{2}-\frac{1}{2}=\frac{2}{n}\)
=> \(\frac{m-1}{2}=\frac{2}{n}\)
=> n(m-1)=4
Mà m-1 lẻ => \(m-1\varepsilon\) \(Ư\) lẻ của 4 = { -1; 1}
=> m \(\varepsilon\) { 0; 2 }
=> n \(\varepsilon\) { -4; 4 }
Dự đoán dấu "=" khi \(m=n=\frac{1}{\sqrt{2}}\text{ hoặc }=-\frac{1}{\sqrt{2}}\)
Nhận thấy dù m, n âm hay dương trong 2 trường hợp trên thì giá trị P vẫn không đổi.
Ta áp dụng Côsi như sau:
\(\frac{m^2n^2}{m^2+n^2}+k\frac{m^2+n^2}{m^2n^2}+\left(1-k\right)\frac{m^2+m^2}{m^2n^2}\ge2\sqrt{\frac{m^2n^2}{m^2+n^2}.k\frac{m^2+n^2}{m^2.n^2}}+\left(1-k\right)\frac{2mn}{m^2n^2}\)\(\text{(}0<\)\(k<\)\(1\text{)}\)
\(=2\sqrt{k}+\left(1-k\right).\frac{2}{\frac{1}{2}}\)
Dấu "=" xảy ra khi \(m=n\text{ và }\frac{m^2n^2}{m^2+n^2}=k\frac{m^2+n^2}{m^2n^2}\)
Theo dự đoán, suy ra: \(\frac{\left(\frac{1}{2}\right)^2}{\frac{1}{2}+\frac{1}{2}}=k.\frac{\frac{1}{2}+\frac{1}{2}}{\left(\frac{1}{2}\right)^2}\Rightarrow k=\frac{1}{16}\)
~~~>> Trình bày ......................
\(\dfrac{a}{b}-1=\dfrac{a^2+n^2}{b^2+n^2}-1\Rightarrow\dfrac{a-b}{b}=\dfrac{\left(a-b\right)\left(a+b\right)}{b^2+n^2}\)
TH1: \(a=b\) thì \(ab=a^2\) là SCP
TH2: \(a\ne b\Rightarrow\dfrac{1}{b}=\dfrac{a+b}{b^2+n^2}\)
\(\Rightarrow b^2+n^2=b\left(a+b\right)\Rightarrow ab=n^2\) là SCP
Giải:
Ta có: \(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
\(\Rightarrow\frac{4}{14}< \frac{4}{4n}< \frac{4}{7}\)
\(\Rightarrow14>4n>7\)
Mà \(n\in N\Rightarrow4n⋮4\)
Các số chia hết cho 4 từ 7 đến 14 là 8 và 12
+) \(4n=8\Rightarrow n=2\)
+) \(4n=12\Rightarrow n=3\)
Vậy n = 2 hoặc n = 3
Vì \(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
\(=>\frac{8}{28}< \frac{8}{8n}< \frac{8}{14}\) ( quy đồng tử )
\(=>8n\in\left\{27;26;25;....;13\right\}\)
Mà trong đó chỉ có 16; 24 là bội của 8 vì \(n\in N\)
Nếu 8n = 16 thì n = 2
Nếu 8n = 24 thì n = 3
Vậy \(n\in\left\{2;3\right\}\)
Ta có \(\frac{17}{3}=5+\frac{2}{3}=5+\frac{1}{\frac{3}{2}}=5+\frac{1}{1+\frac{1}{2}}\)
=> m=5;n=1;p=2
trời, đề thi toán tỉnh Bắc Ninh đây mà. Mik có lời giả nhưng tối mik giải cho