K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

Ta có:\(\frac{2n+3}{4n+8}\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\inƯ\left\{2\right\}\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Ta thấy: \(\hept{\begin{cases}2⋮2\\3⋮2̸\end{cases}}\Rightarrow2n+3⋮2̸\)

\(\Rightarrow d\ne2\)

Vậy d =1

Vì ƯC(2n+3, 4n+8) = 1 nên phân số \(\frac{2n+3}{4n+8}\)

luôn tối giản.

~ Học tốt ~ K cho mk nhé! Thank you.

23 tháng 5 2019

                                                                  \(\text{Bài giải}\)

                            \(\text{Gọi ƯCLN của }2n+3\text{ , }4n+8\text{ là }d\)

      \(\Rightarrow\text{ }2n+3\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }2\left(2n+3\right)\text{ }⋮\text{ }d\text{ }\Rightarrow\text{ }4n+6\text{ }⋮\text{ }d\)

      \(\Rightarrow\text{ }4n+8\text{ }⋮\text{ }d\)

      \(\Rightarrow\text{ }4n+8-\left(4n+6\right)\text{ }⋮\text{ }d\)

       \(\Rightarrow\text{ }4n+8-4n-6\text{ }⋮\text{ }d\)

        \(\Rightarrow\text{ }2\text{ }⋮\text{ }d\)

 \(\Rightarrow\text{ }d\in\left\{1\text{ ; }2\right\}\)

\(\text{Mà }2n+3\text{ là số lẻ }⋮̸2\)

\(\Rightarrow\text{ }d\ne2\)

\(\text{Vậy }d=1\)

\(\text{Vậy với mọi }n\text{ thì }\frac{2n+3}{4n+8}\text{ luôn tối giản}\)

4 tháng 5 2019

a, Gọi WCLN (n+1;2n+3)=d

\(\Rightarrow\)\(\left\{{}\begin{matrix}n+1:d\\2n+3:d\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}2.\left(n+1\right):d\\2n+3:d\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}2n+2:d\\2n+3:d\end{matrix}\right.\)

\(\Rightarrow\)(2n+3)-(2n+2):d

\(\Rightarrow\)2n+3-2n-2 :d

\(\Rightarrow\)1:d\(\frac{ }{\Rightarrow}\)d\(\in\) Ư (1;-1)

\(\Rightarrow\)n+1;2n+3 là số nguyên tố

Vậy \(\frac{n+1}{2n+3}\)là vân số tối giản

b,Gọi UCLN (2n+3;4n+7)=d

\(\Rightarrow\)\(\left\{{}\begin{matrix}2n+3:d\\4n+7:d\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}2\left(2n+3\right):d\\4n+7:d\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}4n+6:d\\4n+7:d\end{matrix}\right.\)

\(\Rightarrow\)(4n+7)-(4n+6):d

\(\Rightarrow\)4n+7-4n-6:d

\(\Rightarrow\)1:d \(\Rightarrow\)d\(\in\)Ư (1)

\(\Rightarrow\)2n+3;4n+7 là số nguyên tố

Vậy\(\frac{2n+3}{4n+7}\)là phân số tối giản

4 tháng 5 2019

Perfect bạn ơi, chuẩn ***** ok

2 tháng 5 2016

GỌi d là ƯC(2n+1 ; 4n)

Khi đó: 2n+1 chia hết cho d 4n chia hết cho d

<=> 8n + 4 chia hết cho d 

2 tháng 5 2016

GỌi d là ƯC(2n+1 ; 4n)

Khi đó: 2n+1 chia hết cho d 4n chia hết cho d

<=> 8n + 4 chia hết cho d 

25 tháng 11 2023

Gọi d=ƯCLN(2n+3;4n+8)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\2n+3⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow4n+8-4n-6⋮d\)

=>\(2⋮d\)

mà 2n+3 lẻ

nên d=1

=>ƯCLN(2n+3;4n+8)=1

=>\(P=\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi n<>-2

17 tháng 1 2018

Gọi ƯCLN(2n+3.4n+8) là d (d E N)

Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d

          4n+8 chia hết cho d

=> 4n+8-(4n+6) chia hết cho d

=> 4n+8-4n-6 chia hết cho d

=> 2 chia hết cho d

=> d E {1;2}

Vì 2n+3 là số lẻ, 4n+8 là số chẵn => d = 1

=> ƯCLN(2n+3,4n+8)=1

Vậy phân số \(\frac{2n+3}{4n+8}\)  là phân số tối giảm (đpcm)

17 tháng 1 2018

Gọi ƯCLN(2n+3.4n+8) là d (d E N)
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
          4n+8 chia hết cho d
=> 4n+8-(4n+6) chia hết cho d
=> 4n+8-4n-6 chia hết cho d
=> 2 chia hết cho d
=> d E {1;2}
Vì 2n+3 là số lẻ, 4n+8 là số chẵn => d = 1
=> ƯCLN(2n+3,4n+8)=1
Vậy phân số \(\frac{2n+3}{4n+8}\)  là phân số tối giảm (đpcm)

:D

15 tháng 5 2016

Gọi d là ƯCLN(2n-1;8n-3)

ta có 2n-1\(⋮\)d;8n-3\(⋮\)d

=>4*(2n-1)\(⋮\)d;8n-3\(⋮\)d

=>8n-4\(⋮\)d;8n-3\(⋮\)d

=>[(8n-4)-(8n-3)]\(⋮\)d

=>[8n-4-8n+3]\(⋮\)d

=>-1\(⋮\)d

=>d=1

Vì ƯCLN(2n-1;8n-3)=1 nên phân số \(\frac{2n-1}{8n-3}\) luôn tối giản(nEN)

15 tháng 5 2016

Gọi d là UCLN(2n-1;8n-3)

=>2n-1 chia hết cho d và 8n-3 chia hết cho d

=>4.(2n-1) chia hết cho d và 8n-3 chia hết cho d

=>8n-4 chia hết cho d và 8n-3 chia hết cho d

=>8n-4-8n+3 chia hết cho d

=>-1 chia hết cho d =>d=1

=>điều phải chứng minh

18 tháng 3 2018

Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Leftrightarrow2⋮d\)

\(\Leftrightarrow d\inƯ\left(2\right)\)

+) \(d=2\Leftrightarrow2n+3⋮2\)

\(2n⋮2\)

\(\Leftrightarrow3⋮2\left(loại\right)\)

\(\LeftrightarrowƯCLN\left(2n+3;4n+8\right)=1\)

\(\Leftrightarrow\dfrac{2n+3}{4n+8}\) tối giản với mọi n

19 tháng 3 2018

cảm ỏn bạn đã giúp mình giải bài toán nàyhihi

28 tháng 4 2019

cho d là UCLL của \(\frac{2n+3}{4n+8}\)

=)\(\left(4n+8\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow4n+8-2\left(2n+3\right)⋮d\)

\(\Rightarrow4n+8-4n+6⋮d\)

\(\Rightarrow2⋮d\)\(\Rightarrow2=d\)

Mà 2n+3 là số lẻ =) d=1

Vậy\(\frac{2n+3}{4n+8}\)là phân số tối giản với mọi số TN n

28 tháng 4 2019

Gọi ước chung lớn nhất của \(2n+3\)và \(4n+8\)là d 

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)\)\(⋮\)\(d\)

\(\Rightarrow4n+8-4n-6\)\(⋮\)\(d\)

\(\Rightarrow2\)\(⋮\)\(d\)

Mà \(2n+3\)không chia hết cho 2 

\(\Rightarrow1\)\(⋮\)\(d\)

\(\Rightarrow\frac{2n+3}{4n+8}\)là phân số tối giản với mọi số tự nhiên n